Ein Natriumchloridkristall
Kapitel 14: Ionen, Salze, Fällungsreaktionen und Ionenbindung

Inhalt

Kapitel 14: Ionen, Salze, Fällungsreaktionen und Ionenbindung... 1

Inhalt:... 2

Vorbemerkungen... 5

Unterkapitel I: Ionen und die Ionenbindung... 6

Leitfähigkeitsmessung von Lösungen.. 7

Zusatzversuch: Leitfähigkeit eines Salzkristalls... 7

Wie gelangen nun die Elektronen vom Minuspol zum Pluspol?.. 8

Ionenwanderung... 9

Edelgaskonfiguration... 10

Welche Ionen sind in Natriumchlorid zu finden?... 11

a) Bildung des Natrium-Ions.. 11

b) Bildung des Chlor-Ions... 11

Erklärung nach den Besetzungsgesetzen des Orbitalmodells (falls im UR schon gemacht)...................... 12

Bildung des Natriumions.. 12

Bildung des Chlorions.. 13

Zur Bestimmung der Ionenladung helfen ein paar Regeln und Tipps mithilfe des PSE:............................ 14

Welche Ionenladung hat das Wasserstoffion?.. 15

Ionen verbinden sich miteinander: Die Ionenbindung.. 16

Beispiele für Metallionen und Säurerestionen:... 17

Liste wichtiger Anionen.. 18

Für Schüler der Oberstufe: Bezeichnung wichtiger Anionen... 19

a) Einatomige Anionen... 19

b) Mehratomige Anionen.. 19

Übungen zur Bestimmung der Ionenladungen... 20

Unterkapitel II: Salze und Mineralien.. 21

Eigenschaften der Salze.. 22

Charakteristische Eigenschaften von Salzen:.. 22

Eigenschaften von Salzen.. 22

Entstehung von Salzen und Salzgewinnung des Menschen:... 22

Gebrauch und Verwendung von Salzen.. 23

Gewinnung von Kochsalz.. 23

Zusammensetzung der Salze.. 23

Der Schmelzpunkt von Salzen ist sehr hoch.. 24

Bergmännische Gewinnung von Natriumchlorid.. 25

Aufgaben.. 27

Nomenklatur bei Salzen.. 28

Übungen zu Salzformeln und Salznamen.. 29

Übungstest zum Thema „Salze und Ionen“... 30

Vier Möglichkeiten der Salzbildung... 31

I) Salzbildung durch Neutralisation.. 31

II) Salzbildung aus Metalloxid und Säure.. 31

III) Salzbildung aus Nichtmetalloxid und Lauge... 32

a) Vorbereitung: Herstellung von frischem Kalkwasser.. 32

b) Salzbildung aus Nichtmetalloxid und Lauge... 32

IV) Salzbildung aus den Elementen.. 33

Zusammenfassung: Salzbildung.. 34

Salzbildung durch Reaktion von Säure und Lauge.. 34

Salzbildung durch Reaktion von Metalloxid und Säure... 34

Salzbildung durch Reaktion von Nichtmetalloxid und Lauge... 34

Salzbildung aus den Elementen... 34

Salzbildung aus Metallen und Säuren... 34

Aufgaben zur Salzbildung... 35

Salzbildung II: Die Bildung von Zinksulfid aus den Elementen... 36

Unterkapitel III: Der Aufbau von Salzkristallen und energetische Aspekte der Salz- und Ionenbildung... 37

Salze im festen Zustand: Der Aufbau der Salzkristalle - das Ionengitter... 38

Max von Laue - Versuch.. 39

https://hoffmeister.it - 02.09.20
Der Laue-Versuch: .. 39
Die Anziehungskraft der Ionen ... 40
Die Koordinationszahl ... 41
- Beispiele für Koordinationszahlen der Ionengitter .. 41
- Wovon hängt die Koordinationszahl ab? ... 41
- Beispiele für Ionenradien .. 41
- Wovon hängt der Ionenradius ab? ... 42
- Vergleiche Atomradios und Ionenradien .. 42
Die wichtigsten Atom- und Ionenradien .. 43
Ionenisierungsergien .. 44
 1. Ionisierungsergie .. 44
Ionenbindung und das Ionengitter ... 45
Energiebilanz der Salzbildung .. 46
Teilschritte der NaCl - Bildung ... 47
 - Beachte das Vorzeichen der beteiligten Energien ... 48
Größe der Gitterenergie .. 49
Die Bildung von Zinksulfid in Teilschritten .. 50
Umkehrung der Salzbildung: Elektrolyse einer (wässrigen) Kupferchloridlösung 51
Übung - Verkupfern eines Schlüssels .. 52
Tipps für eine dauerhaft haltende Kupferschicht bei der Verkupferung 53
Ionenkristalltypen im Detail (nur für den LK) .. 54
 1. Ein Metallion : ein Anion-Typ (M;X⁻): ... 54
 a) CsCl-Typ ... 54
 b) NaCl-Typ ... 54
 c) ZnS-Typ .. 54
 d) BN-Typ (ohne größere Bedeutung) .. 54
 2. Ein Metallion : zwei Anionen-Typ (M;X₂): .. 55
 a) Fluorit-Typ ... 55
 b) Rutil-Typ ... 55
 c) Antifluorit (oder Cristobalit-)Typ: .. 55
 3. Spinell-Typ: ... 55
Übersicht über die verschiedenen Kristalltypen ... 56
Das Coulomb'sche Gesetz ... 57
Wärme und Kälteeffekte beim Lösen von Salzen .. 58
Das legendäre „Bananenmodell“ der Hydratisierung - Ionen umhüllen sich mit Wasser 58
Unterkapitel IV: Fällungsreaktionen und chemische Nachweise .. 60
Fällungsreaktionen .. 61
 Was ist ein schwerlösliches Salz? .. 61
Fällungsreaktionen als chemische Nachweise .. 62
Übersicht über verschiedene Ionenreaktionen .. 63
- Nachweis von Cl⁻-Ionen .. 63
- Nachweis von Ag⁺-Ionen .. 63
- Nachweis von SO₄²⁻-Ionen .. 63
- Nachweis von Ba²⁺-Ionen ... 63
- Nachweis von Fe³⁺-Ionen ... 63
- Nachweis von Cu²⁺-Ionen .. 64
- Nachweis von (CO₃)²⁻-Ionen .. 64
Tabellarische Übersicht über wichtige chemische Nachweisreaktionen 64
Übung: Nachweis von Ionen ... 65
Wozu dienen Fällungsreaktionen? Wasseruntersuchungen .. 66
Laborergebnisse ... 67
Kategorien von Trinkwassern ... 68
 - Natürliches Mineralwasser .. 68
 - Quellwasser ... 68
 - Tafelwasser ... 68
 - Heilwasser ... 68
Unterkapitel V: Zusammenfassung, Tipps und wichtige Hilfen .. 69
Unterscheidung der Stoffe chemischer Reaktionen .. 70
Drei Möglichkeiten Ionenreaktionen zu notieren ... 70

https://hoffmeister.it - 02.09.20
1. Vollständige Salze angeben (mit oder ohne Ionenladung): ... 70
2. Salze in einzelne Ionen aufführen: (immer mit Ionenladung!): .. 70
3. Weglassen der Ionen die an der eigentlichen Reaktion nicht teilnehmen: .. 70
Wiederholungsfragen Ionen... 71
Übungstest zum Thema „Salze und Ionen“ II... 72
Vorbemerkungen

Ionen sind keine Elemente und müssen von Dir immer gut von diesen unterschieden werden. Achte also von nun an darauf, mit welchen Stoff Du es jeweils zu tun hast: Element, Ion oder Verbindung.

Es ist ein schweres Kapitel!

Ich habe das Kapitel in folgende Unterkapitel aufgeteilt:
I: Ionen und die Ionenbindung
II: Salze und Mineralien
III: Der Aufbau von Salzkristallen und energetische Aspekte der Salz- und Ionenbildung
IV: Fällungsreaktionen und chemische Nachweise
V: Zusammenfassung, Tipps und wichtige Hilfen
Unterkapitel I: Ionen und die Ionenbindung
Leitfähigkeitsmessung von Lösungen

Ganz am Anfang dieses Kurses haben wir die Leitfähigkeit von Elementen gemessen. Metalle hatten wir damals festgestellt leiten den elektrischen Strom in der Regel gut. Was ist aber mit Lösungen?

V1: In Wasser werden verschiedene Salze (NaCl, KCl, Na$_2$SO$_4$) sowie Harnstoff und Zucker gegeben. Es sollte immer die gleiche Flüssigkeitsmenge zugegeben werden und auch die gleiche Menge Feststoff. Die Leitfähigkeit wird dann gemessen.

Beobachtungen:

<table>
<thead>
<tr>
<th>Dest. Wasser</th>
<th>Leitungs-wasser</th>
<th>NaCl</th>
<th>NaNO$_3$</th>
<th>KCl</th>
<th>Na$_2$SO$_4$</th>
<th>CaCO$_3$</th>
<th>Harnstoff</th>
<th>Zucker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leitfähigkeit</td>
<td>sehr gering</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>gering</td>
<td>sehr</td>
</tr>
<tr>
<td>Mögliche Werte bei 3V</td>
<td>0,03 mA</td>
<td>15 mA</td>
<td>1500 mA</td>
<td>1650 mA</td>
<td>1400 mA</td>
<td>800 mA</td>
<td>90 mA</td>
<td>0,03 mA</td>
</tr>
</tbody>
</table>

Zusatzversuch: Leitfähigkeit eines Salzkristalls:

V2: Messung der Leitfähigkeit von festen Salzen (=Kristallen)

B2: Die festen Salze leiten den elektrischen Strom gar nicht!

Schlussfolgerungen:

Wenn man nicht immer die gleiche Salzmenge zugibt oder das Wasservolumen unterschiedlich ist, hat man keine absolut vergleichbaren Ergebnisse. Die Ergebnisse können also ungenau sein. Trotzdem kann man verschiedene Zusammenhängen gut erkennen:

1. Je mehr Salz in das Wasser zugegeben wird, desto höher ist die Leitfähigkeit.
2. Festes Salz und Salze, die sich nicht auflösen, zeigen keine Leitfähigkeit.
3. Wasser zeigt nur eine sehr geringe Leitfähigkeit.

Weißt Du eigentlich (noch), was Leitfähigkeit eigentlich ist?

Unsere Apparatur misst eigentlich die Stromstärke I. Sie gibt an, wie viele Elektronen durch die Lösung vom Minuspol zum Pluspol wandern. Die Leitfähigkeit ist definiert als die Proportionalitätskonstante zwischen der Stromdichte und der elektrischen Feldstärke.
Wie gelangen nun die Elektronen vom Minuspol zum Pluspol?

Je mehr Salz sich dabei auflöst, desto mehr erhöht sich die Leitfähigkeit, da mehr Ionen in der Lösung vorhanden sind.

Warum leitet nun der Feststoff den elektrischen Strom nicht? Sind im Kristall keine Ionen vorhanden?

Salze sind aus Ionen aufgebaut. In der Lösung (sowie in geschmolzener Form) sind die Ionen frei beweglich und können Ladungen transportieren, im Feststoff sind die Ionen bereits vorhanden, aber sie sind nicht beweglich!

Elektrischer Strom ist der Fluss von e⁻.

Nur in Salzlösungen und Salzschmelzen sind die Ionen beweglich.

=> Salzkristalle leiten den elektrischen Strom nicht.

Ionen sind elektrisch geladene Atome oder Moleküle. Ionen mit positiver Ladung werden Kationen genannt, Ionen mit negativer Ladung Anionen.
Ionenwanderung

\[V = 25 \text{V} \]

Anode
Kationen sind positiv geladen
Chromat- und Manganationen ---

Kathode
<---- Kupferionen
Anionen negativ geladen.

B: Zum Pluspol sieht man eine orange und violette Färbung, zum Minuspol eine blaue.

S: Unter dem Einfluss des elektrischen Feldes wandern die positiv geladenen (Kationen) Kupferionen zum Minuspol (Kathode), die negativ geladenen Chromationen (Anionen) wandern zum Pluspol (Anode).

Einige der verwendeten Ionen haben eine typische Farbe: Manganationen sind pink, Kuper(II)ionen sind hellblau und Dichromationen sind gelb: \(\text{K}_2\text{Cr}_2\text{O}_7 \).

Auf der Seite des Minuspoles sieht man nun die blauen Kupferionen, auf der anderen Seite die beiden Säurerestionen.

Kannst Du nun eine Vorhersage zu den Ladungen der Ionen treffen?
Edelgaskonfiguration

Man liest oft die folgende Vereinfachung:

Edelgase sind die Elemente der 8. Hauptgruppe. Sie sind sehr reaktionsträge, was durch ihre vollbesetzte äußere Elektronenhülle verursacht ist.

Das ist für Wasserstoff und Helium mit zwei Elektronen richtig. Auch für Elemente der 2. Periode ist die äußere Hülle voll besetzt und somit Edelgaskonfiguration erreicht (Oktett).

Das Problem dieser Vereinfachung ist, dass ab der dritten Periode mehr Elektronen in die äußeren Hüllen passen!

Eine Elektronenhülle kann genau \(2n^2\) Elektronen aufnehmen. (n= Periodennummer = Anzahl an Elektronenhüllen)

=> Elemente der 1. Periode haben mit \(2\) e⁻ Edelgaskonfiguration.
=> Elemente der 2. Periode haben mit \(8\) e⁻ Edelgaskonfiguration.
=> Elemente der 3. Periode haben mit \(8\) e⁻ Edelgaskonfiguration, können aber \(18\) e⁻ aufnehmen.
=> Elemente der 4. Periode haben mit \(8\) e⁻ Edelgaskonfiguration, können aber \(32\) e⁻ aufnehmen.
=> Elemente der 5. Periode haben mit \(8\) e⁻ Edelgaskonfiguration, können aber \(50\) e⁻ aufnehmen.

Usw.

Wie kann man nun die Edelgaskonfiguration genau beschreiben?

Edelgaskonfiguration ist die Konfiguration mit 2 Valenzelektronen für Wasserstoff und Helium sowie 8 Valenzelektronen für alle Hauptgruppenelemente (s2p6)! Davon leitet sich auch der Begriff „Oktettregel“ ab.

Für Nebengruppenelemente und Komplexe gilt stattdessen, dass sie 18 Valenzelektronen einen besonders stabilen Zustand erreichen.

Edelgase sind besonders reaktionsträge und chemisch sehr stabil. Es existieren nur wenige bekannte Verbindungen (z.B. XeF₆).

Die Edelgase haben im elementaren Zustand bereits ihre Edelgaskonfiguration. Durch diese besondere Konfiguration haben einen besonders energiearmen Zustand, dadurch sind sie chemisch besonders stabil und reaktionsträge.

Edelgase sie sind im elementaren Zustand einatomig und bilden nur in Ausnahmefällen Edelgasverbindungen.

Zusatzinformationen:
https://de.wikipedia.org/wiki/Helium
https://de.wikipedia.org/wiki/Neon
https://de.wikipedia.org/wiki/Argon
https://de.wikipedia.org/wiki/Krypton
https://de.wikipedia.org/wiki/Xenon
https://de.wikipedia.org/wiki/Radon
https://de.wikipedia.org/wiki/Edelgaskonfiguration
https://de.wikipedia.org/wiki/18-Elektronen-Regel
https://de.wikipedia.org/wiki/Oktettregel
Welche Ionen sind in Natriumchlorid zu finden?

a) Bildung des Natrium-Ions

Zeichne das Natriumatom $^{23}_{11}$Na (es hat 1 Außenelektron):

Die wichtigste Frage, die man sich bei der Bestimmung der Ionenladung immer stellen muss:
Was muss passieren, damit eine vollbesetzte Außenelektronenwolke vorliegt (also Edelgaskonfiguration erreicht wird)?

Das Element Natrium muss zum Erreichen der Edelgaskonfiguration dieses eine Außenelektron abgegeben! Dem verbleibende Teilchen fehlt es nun, aber die darunterliegende Elektronenhülle, die ja nun die äußerste ist, ist vollbesetzt. Das neu entstandene Ion ist nun positiv geladen.

Wie genau kommt es zur positiven Ladung?
In der atomaren Form liegen je 12 negative und 12 positive Ladungen vor. Entfernt man ein negatives Elektron, dann bleibt eine positive Ladung „über“.

\Rightarrow Das Ion ist also einfach positiv geladen.

b) Bildung des Chlor-Ions

Zeichne das Chloratom $^{35}_{17}$Cl (es hat 7 Außenelektronen):

Was muss passieren, damit eine vollbesetzte Außenelektronenwolke vorliegt?
Ein Außenelektron wird aufgenommen. Das neue Teilchen hat nun ein Elektron mehr und somit eine negative Ladung mehr als vorher. Dadurch ist es negativ geladen.

Wie kommt es zur negativen Ladung?
In der atomaren Form liegen je 17 negative und 17 positive Ladungen vor. Fügt man nun ein negatives Elektron hinzu, dann liegt eine negative Ladung im Überschuss vor.

\Rightarrow Das Ion ist also einfach negativ geladen.

Fast jedes Element kann sowohl atomar, als auch in ionogener Form auftreten. Salze sind aus Ionen aufgebaut.

Aufgaben: Bestimme die Ionenladung der folgenden Ionen: a) LiF, b) MgO, c) HCl1, d) CaF$_2$

1 Schüler stoßen von selbst darauf, dass es nur ein Proton ist!
Erklärung nach den Besetzungsregeln des Orbitalmodells (falls im UR schon gemacht)

Es gibt für die Oberstufe noch ein anderes, schwierigeres aber besseres Atommodell, das Orbitalmodell. Oft zeichnet man hier die Elektronenhüllen nicht, sondern ordnet die Elektronen in sogenannten „Besetzungsdiagrammen“ an, welche die unterschiedlichen Energieniveaus zeigen.

Bildung des Natriumions:

Elemente „streben“ vollbesetzte Energieniveaus an. Natrium erreicht dies durch Abgabe eines Elektrons und erreicht so die Edelgaskonfiguration s2p6:

<table>
<thead>
<tr>
<th>Energie</th>
<th>Natrium</th>
<th>Energie</th>
<th>Natriumion Na⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td>1s</td>
<td>1s</td>
<td>1s</td>
</tr>
<tr>
<td>2s</td>
<td>2px, 2py, 2pz</td>
<td>2s</td>
<td>2px, 2py, 2pz</td>
</tr>
<tr>
<td>3s</td>
<td>3px, 3py, 3pz</td>
<td>3s</td>
<td>3px, 3py, 3pz</td>
</tr>
</tbody>
</table>

Welche Ladung wird das Natriumion also tragen, damit es nur vollbesetzte Energieniveaus hat?

=> +1 => Na⁺

Vergleiche:

<table>
<thead>
<tr>
<th>Natriumatom</th>
<th>Natriumion, Na⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Elektronen, davon 1 Valenzelektron => keine voll besetzte Valenzelektronenhülle => chemisch eher instabil und reaktiv</td>
<td>10 Elektronen, davon 8 Valenzelektron => voll besetzte Valenzelektronenhülle => stabilerer Zustand (energetisch günstiger) => wenig reaktiv</td>
</tr>
</tbody>
</table>
Bildung des Chlorions

Chlor erreicht Edelgaskonfiguration durch Aufnahme eines Elektrons und erreicht so die Edelgaskonfiguration s2p6:

![Energie-Diagramm von Chlor und Chlorion](image)

Welche Ladung kann ein Chloridion tragen, damit es nur vollbesetzte Energieniveaus hat?

=> -1 => Cl⁻

Vergleiche:

<table>
<thead>
<tr>
<th>Chloratom</th>
<th>Chloridion</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 Elektronen, davon 7 Valenzelektron</td>
<td>16 Elektronen, davon 8 Valenzelektron</td>
</tr>
<tr>
<td>=> keine voll besetzte Valenzelektronenhülle</td>
<td>=> voll besetzte Valenzelektronenhülle</td>
</tr>
<tr>
<td>=> chemisch sehr reaktiv</td>
<td>=> stabiler Zustand (energetisch günstiger)</td>
</tr>
<tr>
<td></td>
<td>=> wenig reaktiv</td>
</tr>
</tbody>
</table>

https://hoffmeister.it - 02.09.20
Man kann nun nicht jedes Mal komplette Atome bzw. Besetzungsdiagramme zeichnen, um die Ladung eines Ions zu bestimmen. Zum Glück hilft uns das Periodensystem der Elemente da weiter:

Zur Bestimmung der Ionenladung helfen ein paar Regeln und Tipps mithilfe des PSE:

- Die Ladung einatomiger Ionen entspricht bei Elementen der 1.- 3. Hauptgruppe der Hauptgruppennummer.

 Die Elemente der 1. Hg bilden 1fach positive Ionen (z.B.: Li ---> Li⁺ + e⁻)
 Die Elemente der 2. Hg bilden 2fach positive Ionen (z.B.: Ca ---> Ca²⁺ + 2e⁻)
 Die Elemente der 3. Hg bilden oft 3fach positive Ionen (z.B.: Al ---> Al³⁺ + 3e⁻)

Bei den restlichen Elementen kann sie der Anzahl an Elektronen entsprechen, die zum Erreichen von vollständig besetzten Energiestufen aufgenommen (oder abgegeben werden) müssen:

Bsp. Sauerstoff hat 6 VE => zur vollbesetzten Energiestufe fehlen 2 e⁻ => O²⁻ - Ion

Elemente der 7. Hg bilden oft 1fach negative Ionen (wenn sie überhaupt Ionen bilden) (z.B.: Cl ---> Cl⁻ + e⁻)
Elemente der 6. Hg bilden oft 2fach negative Ionen (wenn sie überhaupt Ionen bilden) (z.B.: O ---> O²⁻ +2e⁻)
Elemente der 5. Hg bilden oft 3fach negative Ionen (wenn sie überhaupt Ionen bilden) (z.B.: N ---> N³⁻ + 3e⁻)

- Metalle bilden positive geladene Ionen (= Kationen), Nichtmetalle bilden (wenn sie Ionen bilden) negativ geladene Ionen (=Anionen).
- Nebengruppenelemente (Fe, Cu, Zn) bilden „Kationen“ verschiedener Ladungen. Häufig ist ihre Ladung 2⁺.
- Edelgase bilden keine Ionen.

Aufgaben:
1. Vervollständige: Ionen entstehen durch...
2. Na⁺-Ionen unterschieden sich von Na-Atomen durch...
3. Welche Eigenschaften haben Ionen?
4. Erkläre den Begriff Ionenbindung.
5. Wie bestimmt man die Ladung eines Säurerestes?
6. Welche Voraussetzungen müssen gegeben sein, damit Ionen den Strom leiten?
7. Schläge im Periodensystem nach, wie sich die Atom- und Ionenradien bei drei von Dir gewählten Elementen unterscheiden.
8. Bestimme die Ionenladungen der folgenden Teilchen:
 Na; Cl; Mg; Li; Sr; Be; S; O; Al; O; C; H; K; Ca; Ba; Br; I; F; Ne
9. Wie lautet die richtige Formel für folgende Salze; Natriumchlorid (= Kochsalz); Bariumsulfat; Magnesiumcarbonat; Natriumsulfat; Lithiumnitrat; Kaliumbromid; Calciumphosphat; Aluminiumsulfat.

https://hoffmeister.it - 02.09.20
Welche Ionenladung hat das Wasserstoffion?

Wasserstoff hat ein nur ein einziges Elektron. Es kann es zum Erreichen der vollbesetzten Außenelektronenwolke und somit zum Erreichen der Edelgaskonfiguration ein Elektron aufnehmen oder eines abgeben.

Während einige Metalle mit dem Hydrid Verbindungen eingehen, so ist (v.a. in der Schule) das H⁺ der häufigere Reaktionspartner.
Ionen verbinden sich miteinander: Die Ionenbindung

Vom Magnetismus aus dem Physikunterricht kennst Du die Anziehung der unterschiedlichen Pole und die Abstoßung von gleichsinnigen Polen. In der Chemie hast Du nun positive und negative elektrostatische Ladungen bei Ionen kennengelernt. Auch diese ziehen sich bei unterschiedlichem Vorzeichen an und stoßen sich bei gleichem Vorzeichen ab.

Die Verbindung mehrerer Elemente kommt durch ihre unterschiedliche Ladung zustande:

- Natriumchlorid: Na⁺Cl⁻
- Calciumfluorid: Ca²⁺F⁻₂
- Aluminiumbromid: Al³⁺Br⁻³

(Die Ladungen werden bei Salzen in der Regel nicht notiert, aber gerade am Anfang, kann man dies machen, da es eine Hilfe sein kann. Aber es müssen dann immer beide Ladungen notiert werden!)

Eine solche Verbindung durch gegensätzliche Ionenladungen wird Ionenbindung oder ionogene Verbindung genannt.

Ionen ungleicher Ladung ziehen sich an und verbinden sich.

\[
\begin{align*}
H^+ + Cl^- & \rightarrow H^+Cl^- \\
Na^+ + Cl^- & \rightarrow Na^+Cl^- \\
Mg^{2+} + O^{2-} & \rightarrow Mg^{2+}O^{2-} \\
\end{align*}
\]

Dabei müssen positive und negative Ladungen ausgeglichen sein, sodass die entstehende Verbindung „nach außen“ ungeladen ist.

\[
\begin{align*}
2H^+ + O^{2-} & \rightarrow H_2O^{2-} \\
2Al^{3+} + 3O^{2-} & \rightarrow Al_2O_3^{2-} \\
\end{align*}
\]

Die Verbindung von Ionen zu einer Verbindung nennt man Ionenbindung.

Alle Salze bestehen aus Ionen, welche durch eine Ionenbindung miteinander verbunden sind.

Es gibt noch eine zweite Art der Verbindung zwischen Atomen. Sie wird Atombindung genannt. Du lernst sie später kennen.
Beispiele für Metallionen und Säurerestionen:

<table>
<thead>
<tr>
<th>Metallion</th>
<th>Säurerestion</th>
<th>Name des Säurerests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium: Li⁺</td>
<td>Cl⁻</td>
<td>Chlorid</td>
</tr>
<tr>
<td>Kalium: K⁺</td>
<td>F⁻</td>
<td>Fluorid</td>
</tr>
<tr>
<td>Natrium: Na⁺</td>
<td>Br⁻</td>
<td>Bromid</td>
</tr>
<tr>
<td>Magnesium: Mg²⁺</td>
<td>I⁻</td>
<td>Iodid</td>
</tr>
<tr>
<td>Calcium: Ca²⁺</td>
<td>S²⁻</td>
<td>Sulfid</td>
</tr>
<tr>
<td>Barium: Ba²⁺</td>
<td>(NO₃)⁻</td>
<td>Nitrat</td>
</tr>
<tr>
<td>Aluminium: Al³⁺</td>
<td>(SO₄)²⁻</td>
<td>Sulfat</td>
</tr>
<tr>
<td>Kupfer: Cu²⁺</td>
<td>(SO₃)²⁻</td>
<td>Sulfit</td>
</tr>
<tr>
<td>Silber: Ag⁺</td>
<td>(CO₃)²⁻</td>
<td>Carbonat</td>
</tr>
<tr>
<td>Eisen: Fe³⁺</td>
<td>(PO₄)³⁻</td>
<td>Phosphat</td>
</tr>
</tbody>
</table>
Aufgaben:
Trage alle Ionenladungen der Säurereste in die Tabelle (oder dem auf dem Säurezettel des letzten Jahres) ein!

Hier die korrekte Lösung:

Die wichtigsten Säuren und ihre Säurereste

<table>
<thead>
<tr>
<th>Säure:</th>
<th>Säurerest:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF Fluorwasserstoffsäure</td>
<td>F⁻ Fluorid</td>
</tr>
<tr>
<td>HCl Chlorwasserstoffsäure</td>
<td>Cl⁻ Chlorid</td>
</tr>
<tr>
<td>HBr Bromwasserstoffsäure</td>
<td>Br⁻ Bromid</td>
</tr>
<tr>
<td>HI Iodwasserstoffsäure</td>
<td>I⁻ Iodid</td>
</tr>
<tr>
<td>H₂S Schwefelwasserstoff(säure)</td>
<td>S²⁻ Sulfid</td>
</tr>
<tr>
<td>HCN Blausäure</td>
<td>CN⁻ Cyanid</td>
</tr>
<tr>
<td>HNO₃ Salpetersäure</td>
<td>(NO₃)⁻ Nitrat</td>
</tr>
<tr>
<td>H₂SO₄ Schwefelsäure</td>
<td>(SO₄)²⁻ Sulfat</td>
</tr>
<tr>
<td>H₂CO₃ Kohlensäure</td>
<td>(CO₃)²⁻ Carbonat</td>
</tr>
<tr>
<td>H₃PO₄ Phosphorsäure</td>
<td>(PO₄)³⁻ Phosphat</td>
</tr>
<tr>
<td>HNO₂ Salpetrigesäure</td>
<td>(NO₂)⁻ Nitrit</td>
</tr>
<tr>
<td>H₂SO₃ Schwefeligesäure</td>
<td>(SO₃)²⁻ Sulfit</td>
</tr>
<tr>
<td>H₃PO₃ Phosphorigesäure</td>
<td>(PO₃)³⁻ Phosphit</td>
</tr>
</tbody>
</table>

Liste wichtiger Anionen

- (SO₄)²⁻ Sulfat
- (HSO₄)⁻ Hydrogensulfat
- (SO₃)²⁻ Sulfit
- (S)²⁻ Sulfid
- (S₂O₃)²⁻ Thiosulfat
- (CO₃)²⁻ Carbonat
- (HCO₃)⁻ Hydrogencarbonat
- (NO₃)⁻ Nitrat
- (NO₂)⁻ Nitrit
- (NH₄)⁺ Ammonium
- (H₃PO₄)⁻ Dihydrogenphosphat
- (H₂PO₄)⁻ Hydrogenphosphat
- (PO₄)³⁻ Phosphat
- (CrO₄)²⁻ Chromat
- (Cr₂O₇)²⁻ Dichromat
- (ClO₄)⁻ Perchlorat
- (ClO₃)⁻ Chlorat
- (MnO₄)⁻ Permanganat
Für Schüler der Oberstufe: Bezeichnung wichtiger Anionen

a) Einatomige Anionen

<table>
<thead>
<tr>
<th>Ion</th>
<th>Name</th>
<th>Säurename</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺</td>
<td>Hydrid</td>
<td></td>
</tr>
<tr>
<td>F⁻, Cl⁻, Br⁻, I⁻</td>
<td>Fluorid, Chlorid, Bromid, Iodid (allg. Halogenid)</td>
<td>Fluorwasserstoffsäure, Chlorwasserstoffsäure, Bromwasserstoffsäure, Iodwasserstoffsäure</td>
</tr>
<tr>
<td>O²⁻</td>
<td>Oxid</td>
<td>Wasser (!)</td>
</tr>
<tr>
<td>S²⁻</td>
<td>Sulfid</td>
<td>Schwefelwasserstoffsäure</td>
</tr>
</tbody>
</table>

b) Mehratomige Anionen

<table>
<thead>
<tr>
<th>Anion</th>
<th>Name</th>
<th>Säurename</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AsO₃)³⁻</td>
<td>Arsenat</td>
<td>Arsen säure</td>
</tr>
<tr>
<td>(AsO₄)³⁻</td>
<td>Arsenit</td>
<td>Arsenige Säure</td>
</tr>
<tr>
<td>(BO₃)³⁻</td>
<td>Borat</td>
<td>(Ortho-)Borsäure</td>
</tr>
<tr>
<td>(CH₃COO)⁻</td>
<td>Acetat</td>
<td>Essigsäure</td>
</tr>
<tr>
<td>(CN)⁻</td>
<td>Cyanid</td>
<td>Hydrogencyanid (Blausäure)</td>
</tr>
<tr>
<td>(CO₂)²⁻</td>
<td>Carbonat</td>
<td>Kohlensäure</td>
</tr>
<tr>
<td>(ClO₄)⁻</td>
<td>Perchlorat</td>
<td>Perchlorsäure</td>
</tr>
<tr>
<td>(ClO₃)⁻</td>
<td>Chlorat</td>
<td>Chlorsäure</td>
</tr>
<tr>
<td>(ClO₂)⁻</td>
<td>Chlorit</td>
<td>Chlorige Säure</td>
</tr>
<tr>
<td>(ClO)⁻</td>
<td>Hypochlorit</td>
<td>Hypochlorige Säure</td>
</tr>
<tr>
<td>(Cr₂O₇)²⁻</td>
<td>Dichromat</td>
<td>„Dichromsäure“</td>
</tr>
<tr>
<td>(CrO₄)²⁻</td>
<td>Chromat</td>
<td>„Chromsäure“</td>
</tr>
<tr>
<td>(MnO₄)⁻</td>
<td>Permanganat</td>
<td>„Permangansäure“</td>
</tr>
<tr>
<td>(N₃)⁻</td>
<td>Azid</td>
<td>Hydrogenazid, Stickstoffwasserstoffsäure</td>
</tr>
<tr>
<td>(NCO)⁻</td>
<td>Isocyanat</td>
<td>Isocyansäure</td>
</tr>
<tr>
<td>(NO₃)⁻</td>
<td>Nitrat</td>
<td>Salpetersäure</td>
</tr>
<tr>
<td>(NO₂)⁻</td>
<td>Nitrit</td>
<td>Salpetersäure</td>
</tr>
<tr>
<td>(OCN)⁻</td>
<td>Cyanat</td>
<td>Cyansäure</td>
</tr>
<tr>
<td>(OH)⁻</td>
<td>Hydroxid</td>
<td>Wasser!</td>
</tr>
<tr>
<td>(PO₄)³⁻</td>
<td>Phosphat</td>
<td>Phosphorsäure</td>
</tr>
<tr>
<td>(PO₃)³⁻</td>
<td>Phosphit</td>
<td>Phosphorige Säure</td>
</tr>
<tr>
<td>(PO₂)⁻</td>
<td>Phosphinat</td>
<td>Phosphinsäure</td>
</tr>
<tr>
<td>(SO₄)²⁻</td>
<td>Sulfat</td>
<td>Schwefelsäure</td>
</tr>
<tr>
<td>(SO₃)²⁻</td>
<td>Sulfit</td>
<td>Schweflige Säure</td>
</tr>
<tr>
<td>(S₂O₃)²⁻</td>
<td>Thiosulfat</td>
<td>Thioschwefelsäure</td>
</tr>
<tr>
<td>(SCN)⁻</td>
<td>Thiocyanat</td>
<td>Thiocyanäsäre</td>
</tr>
</tbody>
</table>

https://hoffmeister.it - 02.09.20
Übungen zur Bestimmung der Ionenladungen

a) Bestimme die Ionenladungen der folgenden Ionen:

Na; Cl, Mg; Li; Sr; Be; S; O; Al
O; C; H; K; Ca; Ba; Br; I; F; Ne

b) Wie lautet die richtige Formel für folgende Salze:

Natriumchlorid (= Kochsalz):
Bariumsulfat:
Magnesiumcarbonat:
Natriumsulfat:
Lithiumnitrat:
Kaliumbromid:
Calciumphosphat:
Aluminiumsulfat:
Unterkapitel II: Salze und Mineralien
Eigenschaften der Salze

Charakteristische Eigenschaften von Salzen:

- Salze sind aus Ionen aufgebaut. Dabei sind immer positive Ionen (Kationen) mit negativen Ionen (Anionen) verbunden. Obwohl sie Ionen enthalten, sind Salze nach „außen“ hin ungeladen.
- Salze sind bei Raumtemperatur Feststoffe. Sie haben einen hohen Schmelzpunkt.
- Salzkristalle sind hart und spröde.
- Salze als Feststoffe (also Salzkristalle) leiten den elektrischen Strom nicht, da die Ionen im Kristall unbeweglich sind! Salzschmelzen und wässrige Lösungen hingegen leiten den elektrischen Strom, da sie freie bewegliche Ionen enthalten.
- Sie bestehen immer aus einem oder mehreren Metallion und einem oder mehreren Säureresten(en).
- Salze haben hohe Siede- und Schmelzpunkte.

Eigenschaften von Salzen:

- Salze sind chemische Verbindungen, die aus positiven und negativen Ionen bestehen.
- Das positive Ion ist immer ein Metallion, das negative Ion ist immer ein Säurerest.
- Feste Salze leiten den elektrischen Strom nicht.
- Flüssige, also geschmolzene Salze (auch Salzschmelze genannt) leiten den elektrischen Strom gut.
- auch Salzlösungen leiten den elektrischen Strom.
- Salze fast ausnahmslos immer hohe Siede- und Schmelzpunkte.
- Salze sind oft mehr oder weniger hart, aber spröde (brüchig).
- Salze können ganz verschiedene Farben haben. Kupfersalze sind z.B. oft blau.
- Nicht jedes Salz löst sich in Wasser auf. So sind zum Beispiel Kalk (Calciumcarbonat) und Gips (Calciumsulfat) wasserunlösliche Salze.

Entstehung von Salzen und Salzgewinnung des Menschen:

- In den Meeren und in Salzlagerstätten findet man vor allem das Salz Natriumchlorid. Wir verwenden es als Speisesalz.
- Der Salzgehalt des Meerwassers ist seit ca. 2 Milliarden Jahren ungefähr gleich.
- Ca. 90% der unterirdischen Salzlagerstätten sind durch eingetrocknete Meere entstanden.
- Salze, welche in geringen Mengen im Boden enthalten sind, lösen sich durch Regenwasser, welches dann als Grundwasser einen natürlichen Salzgehalt hat.
- Nicht gesalzenes Wasser kann maximal 26% Kochsalz lösen. Für andere Salze gibt es andere Werte.

Gebrauch und Verwendung von Salzen

- Neben geschmacklichen Gründen wird es bei Lebensmitteln auch zur Konservierung von Lebensmittel eingesetzt (Pökelfleisch, Fischkonservierung, etc.).
- Jedes Jahr werden große Mengen an Streusalz im Winter verwendet. Es setzt den Schmelzpunkt von Wasser herab, sodass Schnee und Eis auf den Straßen schmelzen.
- Natriumchlorid (Kochsalz) wird als Rohstoff in der chemischen Industrie häufig verwendet. So dient es z.B. der Chlorherstellung (Chlor dient als Ausgangsstoff der chemischen Industrie sowie der Bleich- und Desinfektionsmittelherstellung)
- 0,9%ige Natriumchloridlösung wird in der Medizin als physiologische Kochsalzlösung verwendet. Mit ihr kann man nicht nur Kontaktlinsen lagern, sondern auch Blut verdünnen oder Organe zur Transplantation lagern.
- Soda (=Natriumcarbonat) wird verwendet als Rohstoff für die Glasindustrie, zur Herstellung von Bleichmitteln, Farben, Füllstoffen sowie zur Entschwefelung von Roheisen, Gusseisen und Stahl
- Salze sind als sogenannte Tenside in Seifen und Waschmitteln unentbehrlich.
- Einige Salze, wie z.B. Kochsalz, sind für die menschliche Ernährung unverzichtbar. Deshalb sind Salze wichtiger Bestandteil unserer Nahrung:
 - Soda (=Natriumcarbonatdekahydrat (Na₂CO₃ · 10 H₂O))
 - Streusalz
 - Rohstoff zur Herstellung von Bleichmitteln, Farben, Füllstoffen usw.

Gewinnung von Kochsalz

- Durch bergmännischen Abbau oder durch Abbau durch Salinen. Dabei unterscheidet man den Abbau aus Meerwassersalinen und aus Salinen, die Sole verdampfen.

Zusammensetzung der Salze

Feste Salze sind Verbindungen, die aus positiven Metallkationen und negativen Säurerestanionen bestehen.

Im gelösten Zustand enthält die wässrige Lösung dann beide Ionensorten. Die Ionen werden sich in der Lösung dann frei bewegen. Dieses kennzeichnet man durch ein „(aq)“ am Ion (z.B. Li⁺(aq)).
Der Schmelzpunkt von Salzen ist sehr hoch

In Salzen liegen also Ionen vor. Diese haben eine positive oder negative Ladung. Natriumchlorid besteht aus positiven Natriumionen und negativen Chloridionen. Positive und negative Ionen ziehen sich gegenseitig an. Besonders im Feststoff ist diese Anziehung besonders stark. Aus dem Kapitel über die Eigenbewegung der Teilchen weißt Du schon, dass alle Teilchen schwingen. Also auch Ionen!

Was passiert nun beim Schmelzen eines Salzes?
Die Ionen beginnen zu schwingen und brechen dadurch den „Ionenverbund“ aus positiven und negativen Ionen auf.
=> Ionen werden frei beweglich, das Salz schmilzt.

Beim Schmelzen von Salzen werden dabei also die Ionen voneinander getrennt. Durch Zufügen von Energie erhöht sich dabei die Eigenschwingung der Ionen. Überschreitet die Energie den Schmelzpunkt, ist die Schwingung so groß, das der Verband aus Ionen „zusammenbricht“.

Insgesamt kann man sagen, dass bei Salzen der Schmelzpunkt sehr hoch ist, da die Ionen sich durch die Ionenladung gegenseitig zusammenhalten und man „mehr“ Wärmeenergie zufügen muss, um den Verbund zu lösen, als bei Verbindungen, die keine Ladungen enthalten (z.B. Zucker).
Bergmännische Gewinnung von Natriumchlorid

In Deutschland wird Kochsalz vor allem unter Tage abgebaut, da aufgrund des Klimas eine Meerwasserentsalzung nicht für ganz Deutschland ausreichen würde.

Die Hauptkorridore befinden sich viele hundert Meter unter dem Boden. Von diesen zweigen Seitenkorridore ab.

Das Abbauprodukt: Steinsalz. Es enthält hauptsächlich Natriumchlorid, ist aber noch verunreinigt, wie man sieht.

Mit einem solchen Bohrer wird das relativ weiche Gestein gelöst und abgeschabt. Die Decke erhält dabei ihre typische Struktur. Rechts das gereinigte Produkt!
Aufgaben:
Erstelle ein Video oder einen Text unter der Überschrift: „Die Bedeutung des Salzes“.

2. Bestimme die Ionenladungen der folgenden Ionen:
 \[\text{Na; Cl, Mg; Li; Sr; Be; S; O; Al} \]
 \[\text{O; C; H; K; Ca; Ba; Br; I; F; Ne} \]

3. Bestimme die richtige Formel für folgende Salze:
 Natriumchlorid (= Kochsalz):
 Bariumsulfat:
 Magnesiumcarbonat:
 Natriumsulfat:
 Lithiumnitrat:
 Kaliumbromid:
 Calciumphosphat:
 Aluminiumsulfat:

4. Fasse mit Deinen Worten zusammen, warum Salze eine so große Gruppe der Chemie darstellen.

Zusatzinformationen:
https://de.wikipedia.org/wiki/Salze
https://de.wikipedia.org/wiki/Natriumchlorid
Nomenklatur bei Salzen

Zum Beispiel: Natriumchlorid, Magnesiumsulfat usw.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mono</td>
</tr>
<tr>
<td>2</td>
<td>di</td>
</tr>
<tr>
<td>3</td>
<td>tri</td>
</tr>
<tr>
<td>4</td>
<td>tetra</td>
</tr>
<tr>
<td>5</td>
<td>penta</td>
</tr>
<tr>
<td>6</td>
<td>hexa</td>
</tr>
<tr>
<td>7</td>
<td>hepta</td>
</tr>
<tr>
<td>8</td>
<td>octa</td>
</tr>
<tr>
<td>9</td>
<td>nona</td>
</tr>
<tr>
<td>10</td>
<td>deca</td>
</tr>
</tbody>
</table>
Übungen zu Salzformeln und Salznamen

1. Schreibe hinter jedes Symbol die passende Ionenladung und kombiniere anschließend die Ionen zu „außen“ hin ungeladenen Salzen. Schreibe unter die Salzformel den passenden Namen:

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>Cl</th>
<th>S</th>
<th>O</th>
<th>NO₃</th>
<th>SO₄</th>
<th>PO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe²⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe³⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Vervollständige die Sätze:
 1. Ionen entstehen durch…
 2. Ionen unterschieden sich von Atomen durch…
 3. Salze sind so aufgebaut, dass…
 4. Ionen haben die Eigenschaften…
 5. Ionenladungen bestimmt man…
 6. Die Ladung eines Säurerestes kann man bestimmen, indem…

3. Welche Voraussetzungen müssen gegeben sein, damit Ionen den Strom leiten?
Übungstest zum Thema „Salze und Ionen“

1) Welche der folgenden Stoffe sind gute Leiter für elektrischen Strom? (je 0,5P => 4P)

- Zuckerlösung
- Magnesiumchloridlösung
- Natriumsulfatkristall
- Kochsalzschmelze
- Silberchlorid in Wasser
- Wasser aus der Leitung
- Metallstab
- Kohlenstoffdioxid

Erklärung:

2) Definiere den Begriff „Ion“: (2P)

3) Welche Unterschiede bestehen zwischen Natrium als Element und dem Natriumion? (4P)

4) Unterstreiche bei den Begriffen Anionen in rot und Kationen in grün und notiere dann die entsprechende Formel mit ihrer Ionenladung. (Begriffe je Ion 0,25P + je Formel 0,25P => 6 P)

Natriumion: Nitration: Sulfation: Carbonation:
Berilliumion: Chloridion: Sulfidion: Fluoridion:
Magnesiumion: Phosphation: Oxidion: Silberion:

5) Bestimme die Ionenladungen der Ionen und erstelle dann die Summenformel, welche sie im entsprechenden Salzkristall haben. Zum Schluss markiere die schwerlöslichen Salze (je 0,25P => 9P)

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>Cl</th>
<th>S</th>
<th>SO₄</th>
<th>CO₃</th>
<th>PO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6) Nenne die allgemeine Regel, nach der Salze aufgebaut sind und beschreibe dann die genaue Anordnung. Gehe dabei auch auf den vorliegenden Bindungstyp ein. (4P)

7) Wenn man in Trinkwasser Silbernitratlösung tropft, kommt es zu einer leichten Trübung. Beschreibe die Reaktion genau und benenne den sich bildenden Stoff. (Rückseite) (6P)
Vier Möglichkeiten der Salzbildung
Salze lassen sich auf mehreren Wegen bilden. Diese sind auch in der Natur so zu finden.

I) Salzbildung durch Neutralisation
Diesen Weg kennst Du schon aus dem Kapitel „Neutralisation“.

B: Lösung wird warm, nach dem Eindampfen liegt ein weißer Feststoff vor.

Bsp.: \[
\text{H}_2\text{SO}_4 + 2 \text{KOH} \rightarrow \text{K}_2\text{SO}_4 + 2 \text{H}_2\text{O} + \text{E}
\]

Allgemeine Regel: Säure + Lauge ---\rightarrow Salz + Wasser + E

II) Salzbildung aus Metalloxid und Säure
V1: a) Etwa 4 cm Magnesiumband wird mit einer Tiegelzange in die Bunsenbrennerflamme gehalten. Gib das Reaktionsprodukt in ein Reagenzglas. (Hinweis: Nicht in die Flamme schauen!)
b) Salzbildung: In das Reagenzglas wird verdünnte HCl gegeben (etwa 2cm hoch). Dampfe anschließend die Lösung ein. Benutze dabei unbedingt die Schutzbrille!

b) Das Oxid löst sich in der Säure, beim Eindampfen erhält man einen farblosen Feststoff.

S: a) 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \text{ (Magnesiumoxid)}
b) \text{MgO} + 2 \text{HCl} \rightarrow \text{H}_2\text{O} + \text{MgCl}_2 \text{ (Magnesiumchlorid)}

Allgemeine Regel: Metalloxid + Säure ---\rightarrow Salz + Wasser + E
III) Salzbildung aus Nichtmetalloxid und Lauge
Erinnere Dich an die Herstellung von frischem Kalkwasser:

a) Vorbereitung: Herstellung von frischem Kalkwasser
Überschichte 2 Spatelspitzen CaO mit Wasser und schüttle kräftig. Filriere die entstandene Lösung.

\[\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 \text{ (Kalkwasser)} \]

b) Salzbildung aus Nichtmetalloxid und Lauge

B: Die Lösung färbt sich milchig-trüb.

S: \[\text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O} + \text{E} \]
Calciumcarbonat (Salz)

Calciumcarbonat (Kalk) ist ein schwerlösliches Salz. Es löst sich nur in geringem Maße².

Allgemeine Regel: Nichtmetalloxid + Lauge \rightarrow Salz + Wasser + E

Anmerkung: Im Grunde entsprechen die Wege 2. und 3. dem ersten, da in Nichtmetalloxide mit Wasser Säuren bildet und Metalloxide mit Wasser Laugen entstehen lassen.

² D.h. in Wasser wird nicht genügend Energie aufgebracht, das Ionengitter zu „zerstören“. => das Salz löst sich nicht (nur in sehr geringen Mengen), solange nicht mehr Energie zugeführt wird.
IV) Salzbildung aus den Elementen

V: ca. 5g Magnesium (alternativ Zink) werden mit ca. 3g Iod (I₂) vorsichtig vermischt. Das fertige Gemisch wird dann auf ein Uhrgläschen gebracht und im Abzug vorsichtig mit wenigen Tropfen Wasser aus der Spritzflasche benetzt. Alternativ kann der Versuch im Reagenzglas durchgeführt werden. Dann kann nach Reaktionsende deutlich mehr Wasser zugefügt werden, in dem sich das Salz löst. Das Wasser wird abdekantiert und anschließend eingedampft.

Je eine Spatelspitze Mg und I₂ Schütteln!

S: Bei der Reaktion von Mg und I₂ entsteht (festes) Magnesiumchlorid. Dieses ist aus Ionen aufgebaut (Salz!) => Bei der Reaktion hat ein Magnesiumatom Elektronen an 2 Iodatome abgegeben:

S: Es ist das Salz Magnesiumiodid entstanden

\[
\begin{align*}
\text{Mg} & \rightarrow \text{Mg}^{2+} + 2 \text{e}^- \\
\text{I}_2 + 2 \text{e}^- & \rightarrow 2 \text{I}^- \\
\text{Mg} + \text{I}_2 & \rightarrow \text{Mg}^{2+}\text{I}_2 + \text{E}
\end{align*}
\]

Allgemeine Regel: Metall + Nichtmetall \(\rightarrow\) Salz
Zusammenfassung: Salzbildung

Salze können durch verschiedene Reaktionen entstehen. Dabei meint man immer die chemische Reaktion, bei der am Ende ein Salz vorliegt. Die Gewinnung hingegen ist nicht der chemische Vorgang, sondern der Abbau durch den Menschen.

Salzbildung durch Reaktion von Säure und Lauge

HCl + NaOH --- NaCl + H₂O

Salzbildung durch Reaktion von Metalloxid und Säure

CaO + H₂O --- Ca(OH)₂

Salzbildung durch Reaktion von Nichtmetalloxid und Lauge

Ca(OH)₂ + CO₂ --- CaCO₃ + H₂O + E

Salzbildung aus den Elementen

Mg + I₂ --- MgI₂

Salzbildung aus Metallen und Säuren

Mg + 2HCl --- MgCl₂ + H₂
Aufgaben zur Salzbildung

1. Vervollständige die Gleichungen:

Metalloxid + Säure:

Calciumoxid + Salzsäure

\[
\text{CaO} + ___\text{HCl} \quad \rightarrow \quad +
\]

Calciumoxid + Phosphorsäure

\[
\text{CaO} + ___\text{H}_3\text{PO}_4 \quad \rightarrow \quad +
\]

Nichtmetalloxid + Lauge:

Schwefeldioxid + Barytwasser

\[
\text{SO}_2 + \text{Ba(OH)}_2 \quad \rightarrow \quad +
\]

Kohlendioxid + Natronlauge

\[
\text{CO}_2 + ___\text{NaOH} \quad \rightarrow \quad +
\]

2. **Metall + Nichtmetall:**

Magnesium + Brom

\[
\text{Mg} + ___\text{Br}_2 \quad \rightarrow
\]

Eisen + Chlor (es entsteht Eisen(III)-chlorid)

\[
___\text{Fe} + ___\text{Cl}_2 \quad \rightarrow
\]

2. Stelle drei allgemeine Regeln auf, wie Salze entstehen können.
Verfahre nach dem Muster „reagieren Oxide mit ... , entstehen Salze“.

3. Erkläre die Besonderheit der Edelgase und die Edelgaskonfiguration.

4. Wenn Du eine Energiebetrachtung zu allen Salzbildungen durchführest, was fällt dann auf?
Salzbildung II: Die Bildung von Zinksulfid aus den Elementen

V: Zur Vereinigung von Zink und Schwefel werden beide Elemente miteinander vermischt und auf einem Drahtnetz mit einem glühenden Draht entzündet.

![Glühender Metallstab](https://hoffmeister.it)

Zink und Schwefelpulver vermischt (2:1)

B: Sehr heftige Reaktion, Rauchentwicklung

S: Es fand eine Salzbildung statt. Die Reaktion ist stark exotherm. Der neue Stoff heißt Zinksulfid.

Zum Aufstellen der Reaktionsgleichung muss man wissen, dass Zn zwei Valenzelektronen besitzt:

\[
\begin{align*}
\text{Zn} & \quad \rightarrow \quad \text{Zn}^{2+} + 2\, \text{e}^- \\
\text{S} + 2\, \text{e}^- & \quad \rightarrow \quad \text{S}^{2-}
\end{align*}
\]

\[
\text{Zn} + \text{S} \quad \rightarrow \quad \text{Zn}^{2+} \text{S}^{2-} + \text{E}
\]
Unterkapitel III: Der Aufbau von Salzkristallen und energetische Aspekte der Salz- und Ionenbildung
Salze im festen Zustand: Der Aufbau der Salzkristalle - das Ionengitter

Ansetzen einer Kristallzucht:
B: Es bildet ein Salzkristall.
S: Die ursprünglich frei beweglichen Ionen ziehen sich gegenseitig an und bilden einen Ionenverband bei dem sich die Kationen und die Anionen gegenseitig anziehen.

Die Verbindung der positiv und negativ geladenen Ionen zu einem stabilen Verband/ Gitter setzt eine hohe Gitterenergie frei (es ist also ein stark exothermer Schritt). Sie beruht auf der starken Anziehungskraft zwischen den Ionen entgegengesetzter Ladung.
Max von Laue - Versuch

Max von Laue war Physiker, der an der Universität Straßburg studierte und sich dann später, nach seinem Umzug nach Göttingen schwerpunktmäßig mit Optik beschäftigte. 1903 promovierte er bei Max Planck in Berlin. Nach seiner Habilitation 1906 beschäftigte er sich als Professor mit der Relativitätstheorie Albert Einsteins und entwickelte 1907 mit seinen optischen Experimenten wichtige Beweise für die Richtigkeit des Einsteinschen Additionstheorems. 1909 kam er als Privatdozent an das Institut für theoretische Physik der Universität München. Er war Spezialist für Licht und Strahlung und erkannte viele Gemeinsamkeiten mit den radioaktiven Strahlen.

Der Laue-Versuch:

S: Im festen Zustand liegt in Salze ein Ionengitter vor. Dabei sind Ionen im richtigen stöchiometrischen Verhältnis so „gepackt“, dass jedes Kation die gleiche Anzahl an Anionen als Nachbarn hat (und umgekehrt). Ein positives Ion hat also nur negative Ionen als Nachbar und umgekehrt. Die Anzahl ist dabei immer gleich! Diese Zahl nannte er Koordinationszahl. Die Koordinationszahl gibt die Anzahl der unmittelbaren Nachbarn an, welche für die jeweiligen Salze typisch ist!

Es gibt dabei v.a. drei wichtige Typen, die besonders häufig auftreten. Laue benannte sie nach den Salzen, wo er dies zuerst bemerkte:

- NaCl: Natriumchlorid-Typ KZ = 6 (also 6 Nachbarn pro Ion) bildet einen Oktaeder.
- CsCl: Cäsiumchlorid-Typ KZ = 8 (also 8 Nachbarn pro Ion) bildet einen Würfel.
- ZnS: Zinksulfid-Typ KZ = 4 (also nur 4 Nachbarn pro Ion) bildet einen Tetraeder.

Aber warum ist die Summenformel dann NaCl?

Wenn aber jedes Ion so viele Nachbarn hat, warum ist dann die Summenformel nicht Na⁺Cl⁻?

Das wäre doch viel zu chaotisch und kompliziert!

Die Summenformel gibt also nur das Verhältnis der Ionen an.

Bsp.: Na⁺Cl⁻ : Verhältnis Na⁺ : Cl⁻ = 1:1

Zusatzinformationen:
https://de.wikipedia.org/wiki/Max_von_Laue

3 Auch wenn Menschen die Röntgenstrahlen nicht sehen können, so ist die Photoplatte dafür doch sensibel. Röntgenstrahlen schwärzen die Stellen, auf die sie treffen (denn es ist ja ein Negativ!). Nach der Entwicklung sind diese Stellen dann hell (siehe auch Abbildung)
Die Anziehungskraft der Ionen

Aus dem Versuch der Natriumchloridbildung weißt Du schon, dass die Ionengitterbildung ein exothermer Prozess ist. Diese Energie wurde frei, da sich anziehende (unterschiedlich geladene) Teilchen aufeinandertreffen.

Versucht man nun, zwei miteinander verbundene Ionen voneinander zu trennen, benötigt man Energie. Dies kann man im täglichen Leben gut durch das Auseinanderziehen zweier Magneten verdeutlichen: Zwei miteinander verbundene Teilchen kann man nur durch das Aufbringen von Energie voneinander trennen!

Man kann sogar berechnen, wie groß die Energie ist, die bei der Gitterbildung frei wird, bzw. die aufgebracht werden muss, um das Gitter zu zerstören (schmelzen)⁴. Diese Energie entspricht im Betrag dem Energiebetrag, der notwendig ist, die Ionen wieder voneinander zu trennen.

⁴ Damit das Ionengitter richtig fest und stabil ist, muss der optimale Abstand zwischen den Ionen vorliegen. Ist er zu groß, wäre das Gitter zu locker (zu geringe Anziehungskraft), ist er zu gering, würden sich die Atomkerne zu stark abstoßen.
Die Koordinationszahl

Die Anordnung der Ionen im Kristall ist regelmäßig. Betrachtet man z.B. einen Natriumchloridkristall, sieht man:

a) Jedes Na⁺-Ion ist von 6 Cl⁻-Ionen umgeben.
b) Jedes Cl⁻-Ion ist von 6 Na⁺-Ionen umgeben.

=> Man sagt daher die Koordinationszahl (KZ) beim Kochsalz ist 6.

Die Koordinationszahl ist die Anzahl der direkten Nachbarn in einem regelmäßig aufgebauten Verband.

Beispiele für Koordinationszahlen der Ionengitter

<table>
<thead>
<tr>
<th>Ionengitter</th>
<th>Koordinationszahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>KZ = 6</td>
</tr>
<tr>
<td>CsCl</td>
<td>KZ = 8</td>
</tr>
<tr>
<td>ZnS</td>
<td>KZ = 4</td>
</tr>
</tbody>
</table>

Diese drei Typen stehen exemplarisch ebenfalls für viele andere Salze. Verbinden sich also Ionen mit der Koordinationszahl 6, spricht man vom NaCl-Typ, bei KZ 8 vom CsCl-Typ und bei KZ 4 vom ZnS-Typ.

Wovon hängt die Koordinationszahl ab?

1) Vom Ionenradius: Je größer ein Anion ist, desto mehr Kationen könnten darum angeordnet werden.
2) Die Formel gibt an, wie sich die Zahlen von Anionen und Kationen in der Verbindung zueinander verhalten.

Die Formel einer Ionenverbindung ist immer eine Verhältnisformel, keine Molekülfomel

Beispiele für Ionenradien:

<table>
<thead>
<tr>
<th>Ion</th>
<th>Radius (pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>97</td>
</tr>
<tr>
<td>Cs⁺</td>
<td>169</td>
</tr>
<tr>
<td>Zn²⁺</td>
<td>74</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>181</td>
</tr>
<tr>
<td>S²⁻</td>
<td>184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radienverhältnis</th>
<th>Koordinationszahl</th>
<th>Anordnung der Ionen</th>
<th>Gittertyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{Kation} / r_{Anion}</td>
<td>4</td>
<td>tetraedrisch</td>
<td>ZnS-Typ</td>
</tr>
<tr>
<td>0,42 bis 0,73</td>
<td>6</td>
<td>oktaedrisch</td>
<td>NaCl-Typ</td>
</tr>
<tr>
<td>> 0,73</td>
<td>8</td>
<td>würfelförmig</td>
<td>CsCl-Typ</td>
</tr>
</tbody>
</table>

Aufgaben:

Ermittle die Koordinationszahlen den und Gittertyp von Lithiumbromid: r(Li⁺) = 68 pm, r(Br⁻) = 195 pm
Wovon hängt der Ionenradius ab?
Zwei Faktoren beeinflussen den Ionenradius:

a) Die Anzahl an Elektronenhüllen:
Von Periode zu Periode nehmen die Ionenradien zu, da mit jeder Periode auch eine neue Elektronenhülle (Schale) vorhanden ist => der Radius nimmt zu!

b) Die Anzahl an Valenzelektronen:
Werden Elektronen abgegeben, so wird die Edelgaskonfiguration der darunterliegenden Hülle (Schale) erreicht. Es entstehen positiv geladene Ionen (Kationen). Es gilt also folgende Regel: Kationen sind kleiner als die Anionen derselben Periode.

Schaut man aber innerhalb einer Elektronenhülle, dann nimmt der Radios mit steigender Ordnungszahl leicht ab, da immer mehr Protonen im Kern vorhanden sind.

Erklärung: Von Element zu Element nimmt innerhalb einer Periode die Kernladungszahl (= Protonenzahl) zu. Das heißt, die Außenelektronen werden immer stärker durch mehr und mehr Protonen angezogen. => Der Radius nimmt leicht ab.

Grobe Faustregel: Bei der Kationenbildung nimmt der Ionenradius ab, bei der Anionenbildung hingegen nur unmerklich zu

Von der Größe der Ionen ist im Übrigen auch die Anzahl an Nachbarn im Salzkristall abhängig (=Koordinationszahl). Sie bestimmt u.a. auch die Form der Salzkristalle.

Vergleiche Atomradios und Ionenradius:
1. Bei Kationen, also positiv geladenen Ionen, ist der Ionenradius kleiner als der Atomradius. Je größer die positive Ladung ist, desto kleiner wird der Ionenradius.
2. Bei Anionen, also negativ geladenen Ionen, ist der Ionenradius größer als der Atomradius. Je größer die negative Ladung ist, desto größer wird der Ionenradius.

Zusatzinformationen:
https://de.wikipedia.org/wiki/Coulombsches_Gesetz
Die wichtigsten Atom- und Ionenradien

Vergleiche einmal Ionenradien und die jeweilig entsprechenden Atomradien. Kannst Du eine generelle Aussage treffen, die zwischen Anionen und Kationen unterscheidet?

<table>
<thead>
<tr>
<th></th>
<th>Atomradius (m⁻¹²) (=pm)</th>
<th>Ionenradius (m⁻¹²) (=pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>144</td>
<td>Ag⁺: 115</td>
</tr>
<tr>
<td>Al</td>
<td>143</td>
<td>Al³⁺: 57</td>
</tr>
<tr>
<td>Ba</td>
<td>217</td>
<td>Ba²⁺: 143</td>
</tr>
<tr>
<td>Be</td>
<td>111</td>
<td>Be²⁺: 34</td>
</tr>
<tr>
<td>Br</td>
<td>114</td>
<td>Br⁻: 196</td>
</tr>
<tr>
<td>Ca</td>
<td>197</td>
<td>Ca²⁺: 106</td>
</tr>
<tr>
<td>Cl</td>
<td>99</td>
<td>Cl⁻: 181</td>
</tr>
<tr>
<td>F</td>
<td>64</td>
<td>F⁻: 133</td>
</tr>
<tr>
<td>Fe</td>
<td>124</td>
<td>Fe³⁺: 67</td>
</tr>
<tr>
<td>H</td>
<td>30</td>
<td>H⁺: 154</td>
</tr>
<tr>
<td>I</td>
<td>133</td>
<td>I⁻: 220</td>
</tr>
<tr>
<td>K</td>
<td>227</td>
<td>K⁺: 133</td>
</tr>
<tr>
<td>Li</td>
<td>152</td>
<td>Li⁺: 60</td>
</tr>
<tr>
<td>Mg</td>
<td>160</td>
<td>Mg²⁺: 78</td>
</tr>
<tr>
<td>Mn</td>
<td>137</td>
<td>Mn²⁺: 91</td>
</tr>
<tr>
<td>N</td>
<td>70</td>
<td>N³⁻: 171</td>
</tr>
<tr>
<td>Na</td>
<td>186</td>
<td>Na⁺: 98</td>
</tr>
<tr>
<td>O</td>
<td>66</td>
<td>O²⁻: 132</td>
</tr>
<tr>
<td>P</td>
<td>110</td>
<td>P³⁻: 212</td>
</tr>
<tr>
<td>Pb</td>
<td>175</td>
<td>Pb²⁺: 132</td>
</tr>
<tr>
<td>S</td>
<td>104</td>
<td>S²⁻: 195</td>
</tr>
</tbody>
</table>
Ionosierungsenergien

Schaut man sich den Vorgang der Ionenbildung aus den jeweiligen Elementen genauer an, so sieht man, dass die Abgabe bzw. die Aufnahme eines Elektrons Energie benötigt. Um das genau zu verstehen, müssen wir uns ein wenig erinnern:

Erinnere Dich:

<table>
<thead>
<tr>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td><------- Metalle -------></td>
<td>Halbmetall</td>
<td><------- Nichtmetalle -------></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Innerhalb einer Hauptgruppe sind die Eigenschaften der Elemente teilweise sehr ähnlich.
- Innerhalb einer Periode folgen Elemente mit sehr unterschiedlichen Eigenschaften aufeinander.
- In einer Periode nimmt von links nach rechts die Ordnungszahl und damit auch die Elektronenzahl und die Kernladungszahl (letzteres durch die Zunahme an Protonen) um jeweils eine Einheit zu.
- Da chemische Eigenschaften vor allem durch die Zahl der Valenzelektronen bestimmt sind, unterscheiden sich Elemente innerhalb einer Periode erheblich in ihren chemischen Eigenschaften.
- Im PSE werden die Elemente nach steigender Ordnungszahl (Kernladungszahl) geordnet.
- Die Zugabe oder Wegnahme eines Elektrons ist dabei immer „preiswerter“, es wird also weniger Energie benötigt, als für die Abgabe oder Zugabe von einem zweiten, dritten oder gar vierten Elektron notwendig wäre. Deshalb gibt es auch so wenige Ionen mit hohen Ionenladungen.

1. Ionisierungsenergie

- Elektronenaffinität
- Atomradius

<table>
<thead>
<tr>
<th>Ionisierungsenergie [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C ---> C⁺</td>
</tr>
<tr>
<td>C⁺ ---> C²⁺</td>
</tr>
<tr>
<td>C²⁺ ---> C³⁺</td>
</tr>
<tr>
<td>C³⁺ ---> C⁴⁺</td>
</tr>
<tr>
<td>C⁴⁺ ---> C⁵⁺</td>
</tr>
</tbody>
</table>

Merke:
Die Periodennummer gibt die Zahl der Elektronenschalen/ Elektronenhüllen an.
Die Hauptgruppennummer gibt die Zahl der Valenzelektronen an.

https://hoffmeister.it - 02.09.20
Ionenbindung und das Ionengitter

Def.: Eine Ionenbindung ist die Verbindung von unterschiedlich geladenen Ionen.

Regeln:

- Ein Ion kann aus einem oder mehreren Atomen bestehen (Na⁺, Cl⁻, NO₃⁻).

 Chlor ---> Chlorid (Cl⁻) Schwefel ---> Sulfid (S²⁻)

- Eine aus Ionen aufgebaute Verbindung besteht aus zahlreichen Anionen und Kationen, die im festen Zustand zu einem Ionengitter (Kristall) geordnet sind. Die elektrostatische Anziehung hält den Kristall zusammen.

- Die Koordinationszahl gibt die Zahl der unmittelbaren Nachbarn an. (Bsp. NaCl: KZ = 6)

- Bei der Bildung eines Ionengitters wird GITTERENERGIE frei. Das Ionengitter ist demnach ein von den Ionen „angestrebter“ Zustand. (Man glaubt es kaum, aber der geordnete Zustand ist der, der am wenigsten Energie benötigt)

- Zum Auflösen eines Ionengitters wird demzufolge wieder der Betrag Gitterenergie benötigt, der bei der Bildung frei wurde (Um also „Unordnung“ zu erzeugen, muss Energie „reingesteckt“ werden.).

- Beim Schmelzen von Salzen werden die Ionen des Ionengitters voneinander getrennt. Durch Zufügen von Energie erhöht sich dabei die Eigenschwingung der Ionen. Überschreitet die Energie den Schmelzpunkt (= Betrag der Gitterenergie), ist die Schwingung so groß, dass das Ionengitter „zusammenbricht“.

 => Da die Ionen sich durch die Ionenladung gegenseitig zusammenhalten, muss sehr viel Energie aufgebracht werden, um das Ionengitter zu zerstören.

 => Bei Salzen ist der Schmelzpunkt also sehr hoch!

Bei der Bildung eines Ions aus einem Atom wird Energie benötigt:\n
- **Ionisierungsenergie** (ΔH_I): Energie, die benötigt wird, um aus einer Elektronenwolke eines Atoms ein Elektron zu entfernen.

- **Elektronenaufnahme** (ΔH_{EA}): Energie, die benötigt bzw. frei wird, um einem Atom ein Elektron zuzufügen

5 Siehe auch „Die Teilschritte der NaCl-Bildung“.

https://hoffmeister.it - 02.09.20
Energiebilanz der Salzbildung

Die Salzbildung ist immer exotherm. Eine besonders exotherme Reaktion ist die Bildung von Natriumchlorid:

V: Reaktion von Natrium und Chlor.
B: Es entsteht ein weißer Feststoff. Die Reaktion ist stark exotherm.
S: Es ist Natriumchlorid entstanden. Große Energiemengen wurden frei.

\[
\begin{align*}
Na & \rightarrow Na^+ + e^- \\
Cl_2 + 2 e^- & \rightarrow 2 Cl^- \\
2 Na + Cl_2 & \rightarrow 2 NaCl + E
\end{align*}
\]
Kapitel 14: Ionen, Salze, Fällungsreaktionen und Ionenbindung

Teilschritte der NaCl - Bildung

Die Bildung von NaCl läuft in mehreren Schritten ab. Um die Heftigkeit der Reaktion besser zu verstehen, zerlegen wir sie mal in Einzelschritte:

Welche Teilschritte müssen ablaufen, damit Natrium und Chlor zu Natriumchlorid reagieren?

1a) Na \rightarrow Na$^+$

(1) Sublimation: (festes) Natrium (s) wird zu (gasförmigem) Natrium (g).
Dazu wird Energie benötigt => Sublimationsenergie ist endotherm >0

(2) Ionisierung: Natrium (g) wird unter Elektronenabgabe zum Na$^+$ Ion.
Dazu wird Energie benötigt => Ionisierungsenergie ist endotherm >0

1b) $\frac{1}{2}$ Cl$_2$ \rightarrow Cl$^-$

(1) Dissoziation: Chlor wird in zwei Atome gespalten (Cl$_2$ \rightarrow Cl + Cl).
Dazu wird Energie benötigt => Dissoziationsenergie ist endotherm >0

(2) Elektronenauffinität: Das Chloratom wird unter Elektronenaufnahme zum Chloridion.
Dabei wird Energie frei => Elektronenauffinitätenergie ist exotherm <0

2) Gitterbildung

Die Vereinigung der gasförmigen Ionen zum Salzkristall ist stark exotherm! <0
Beachte das Vorzeichen der beteiligten Energien:

Sublimation: Endothermer Schritt, da ein fester Zusammenhalt gelöste werden muss

Ionisierung: Endothermer Schritt, da dem Natriumatom ein Elektron „genommen“ wird

(Ionisierungsenergie: Energie, die zum Ablösen eines Elektrons benötigt wird)

Dissoziation: Endothermer Schritt, da die beiden Atome des Moleküls „getrennt“ werden

Elektronenaufnahme: Exothermer Schritt, da Elektronen zugefügt werden.

Ist eigentlich logisch, denn wenn die Ionisierung endotherm ist, dann muss der gegenteilige Prozess exotherm sein!

(Die Elektronenaaffinität ist die Energie, die bei der Aufnahme eines e⁻ frei wird)

Gesamtbildungsenergie

<table>
<thead>
<tr>
<th>Reaktion</th>
<th>Energiediff. (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na (s) --- Na (g)</td>
<td>ΔH<sub>S</sub> = + 109</td>
</tr>
<tr>
<td>Na (g) --- Na⁺ + e⁻</td>
<td>ΔH<sub>I</sub> = + 502</td>
</tr>
<tr>
<td>½ Cl₂ --- Cl</td>
<td>ΔH<sub>B</sub> = + 121</td>
</tr>
<tr>
<td>Cl + e⁻ --- Cl⁻</td>
<td>ΔH<sub>EA</sub> = - 365</td>
</tr>
<tr>
<td>Na⁺ + Cl⁻ --- Na⁺Cl⁻</td>
<td>ΔH<sub>G</sub> = - 778</td>
</tr>
<tr>
<td>Na + ½ Cl₂ --- Na⁺Cl⁻ (s)</td>
<td>ΔH<sub>R</sub> = - 411</td>
</tr>
</tbody>
</table>

Berechnung der Bildungsenergie von NaCl:

\[
\Delta E_\text{Bildung} = \Delta E_\text{Subl} + \Delta E_\text{Ionisierung} + \frac{1}{2} \Delta E_\text{Dissoziation} + \Delta E_\text{Elektronenaaffinität} + \Delta E_\text{Gitter}
\]

Das Erreichen der Edelgaskonfiguration kann somit nicht der Grund für die exotherm verlaufende Reaktion von Natrium und Chlor zum stabilen Natriumchlorid sein.

Vielmehr ist es das Zusammentreten der Ionen zu einem energiearmen, stabilen Gitter unter Freisetzung eines hohen Betrages an Gitterenergie. Die Edelgasregel ist somit ein geeignetes Hilfsmittel bei der Aufstellung der an der Salzbildung beteiligten Ionen, begründet jedoch nicht die „Triebkraft“ der Salzbildung.
Größe der Gitterenergie

Die Gitterenergie ist umso größer, je kleiner die Ionen und je höher deren Ladung ist.

Aufgaben:

2. Magnesium, Calcium und Barium bilden als Elemente der 2. Hauptgruppe zweifach positiv geladene Ionen. Der Radius dieser Ionen steigt von 55 pm (Mg$^{2+}$) über 99 pm (Ca$^{2+}$) auf 135 pm (Ba$^{2+}$). Die Oxide dieser drei Metalle schmelzen bei 1920, 2570 bzw. 2800 °C. Ordne diese Schmelzpunkte den drei Verbindungen zu!

3. Berechne die Bildungsenergie für CsCl.

 Cäsium:
 \[
 \Delta E_{\text{sub}} = 78 \text{ kJ/mol} \\
 \Delta E_{\text{ion}} = 377 \text{ kJ/mol} \\
 \text{Summe: 455 kJ/mol}
 \]

 Chlor:
 \[
 \Delta E_{\text{diss}} = 242 \text{ kJ/mol} \\
 \Delta E_{\text{elektroaff}} = -365 \text{ kJ/mol} \\
 \Delta E_{\text{Gitter}} = -661 \text{ kJ/mol} \\
 \Delta E_{\text{Bildung}} = -450 \text{ kJ/mol}
 \]

 Kalium:
 \[
 \Delta E_{\text{sub}} = 90 \text{ kJ/mol} \\
 \Delta E_{\text{ion}} = 425 \text{ kJ/mol} \\
 \Delta E_{R} = -439 \text{ kJ/mol}
 \]
Die Bildung von Zinksulfid in Teilschritten

1. Die Bildung von Atomen

\[\text{Zn (fest, Atomverband) ---> Zn (g)} \quad \text{Sublimationsenthalpie (> 0)} \]
\[\text{S (fest, Atomverband) ---> S (g)} \quad \text{Sublimationsenthalpie (> 0)} \]

2. Die Bildung von Ionen

\[\text{Zn ---> Zn}^{2+} + 2 \text{ e}^- \quad \text{Ionisierungsenergie (< 0)} \]
\[\text{S + 2 e}^- \rightarrow \text{S}^{2-} \quad \text{Elektronenaffinität (> 0)} \]

3. Die Bildung des Ionengitters

\[\text{Zn}^{2+} + \text{S}^{2-} \rightarrow \text{Zn}^{2+}\text{S}^{2-} \quad \text{Gitterenergie (<< 0!)} \]
Umkehrung der Salzbildung: Elektrolyse einer (wässrigen) Kupferchloridlösung

B: S:
Am Minuspol entsteht ein dunkelbrauner Feststoff. => Kathode: Kupferabscheidung
Am Pluspol entsteht ein stechend riechendes Gas. => Anode: Chlorentwicklung

Detailzeichnung:

- Pol (Anode):
 1. Schritt: Cl\(^-\) ---\(\rightarrow\) [Cl] + e\(^-\)
 2. Schritt: 2[Cl] ---\(\rightarrow\) Cl\(_2\)
 => 2 Cl\(^-\) ---\(\rightarrow\) Cl\(_2\) + 2e\(^-\)

+ Pol (Kathode):
 Cu\(^{2+}\) + 2e\(^-\) ---\(\rightarrow\) Cu

Gesamtreaktionsgleichung: 2Cl\(^-\) + Cu\(^{2+}\) +E ---\(\rightarrow\) Cl\(_2\) + Cu

Kathode: Kupferionen (= Kationen) + Elektronen ---\(\rightarrow\) Kupferatome
Anode: Chloridionen (= Anionen) ---\(\rightarrow\) Chloratome + Elektronen
(---\(\rightarrow\) Chlormoleküle)

Aufgaben:
1. Stelle die Reaktionsgleichung einer Magnesiumchloridlösung Elektrolyse auf. Welche Produkte entstehen?
Übung - Verkupfern eines Schlüssels

Ein Indiz ist die Kohleelektrode der Kupferchloridelektrolyse, sie trägt einen Kupferbelag. Kann man sich dies technisch nicht zunutze machen? Wie kann man z.B. ein Metall mit einer Kupferschicht überziehen?

V: Elektrolyse einer Kupferionenlösung:

![Image of a cell showing the electrolysis of a copper ion solution](https://hoffmeister.it)

Problem: wie kann das Kupfer gut am Feststoff haften?

Ein möglichst dichter und geschlossener Kupferüberzug ist wünschenswert, da er stabiler und schöner ist.

=> Reinigung vorher ist notwendig.

B: An der Anode entsteht ein dunkelbrauner Feststoff.

An der Kathode entsteht ein stechend riechendes Gas.

S: Am Schlüssel setzt sich schon nach kurzer Zeit ein rotbrauner Belag ab, der Anfangs schwarz erscheint. Es handelt sich um Kupfer (siehe auch vorheriger Versuch).

Gesamtreaktionsgleichung: $2Cl^- + Cu^{2+} + E \rightarrow Cl_2 + Cu$
Tipps für eine dauerhaft haltende Kupferschicht bei der Verkupferung

• Damit die Kupferschicht guthält, ist es am besten, wenn man einen Kupferkomplex bildet. Dazu wird Kupfer in Drahtform in Ammoniumnitratlösung gelegt. Nach einigen Tagen ist die Lösung tiefblau. Dabei bildet sich der Kupfertetramminkomplex \([\text{Cu}((\text{NH}_3)_4)]^{2+}\).

• Den Schlüssel nicht zu lang im Kupferbad lassen. Geeignet sind zum Beispiel bei 5V und ca. 8-9Amp 30 Sekunden Reaktionszeit.

• Den Schlüssel vorher gut entfetten. Dies gelingt sowohl mit Spiritus, Nitroverdünner oder Aceton.

Zusatzinformationen:
Andere Möglichkeiten zum Verkupfern: https://de.wikipedia.org/wiki/Verkupfern
https://de.wikipedia.org/wiki/Elektrolyse
Ionen kristalltypen im Detail (nur für den LK)

Kristallisiert eine Salzlösung aus, bildet sich automatisch ein Salzkristall. Dabei vereinen sich die Ionen mit den unterschiedlichen Ladungen (Kation mit Anion usw.). Es bilden sich Elementarzellen (Ez). In jeder Elementarzelle befinden sich Kationen und Anionen. Stabil ist eine Elementarzelle dann, wenn die Abstände zwischen Kationen und Anionen kurz sind.

1. Ein Metallion : ein Anion-Typ (MₙXₙ):

a) CsCl-Typ
1 Anion / Kation pro Ez
Kz=8

b) NaCl-Typ:
4 Anionen / Kationen pro Ez
Kz=6

c) ZnS-Typ:
4 Anionen / Kationen pro Ez
Kz=4

d) BN-Typ (ohne größere Bedeutung)
Kz=3

Welcher Typ beim Auskristallisieren entsteht, hängt vom Verhältnis der Radien von Kation und Anion ab:

<table>
<thead>
<tr>
<th>Übergänge r_{Kation} / r_{Anion}:</th>
<th>> 3 : 1</th>
<th>2 : 1</th>
<th>6 : 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsCl-Typ</td>
<td>NaCl-Typ</td>
<td>ZnS-Typ</td>
<td>BN-Typ</td>
</tr>
</tbody>
</table>

https://hoffmeister.it - 02.09.20
2. Ein Metallion : zwei Anionen-Typ (M_2X_3):
Übergänge und Koordinationszahlen sind entsprechend

a) Fluorit-Typ

b) Rutil-Typ

c) Anitfluorit (oder Cristobalit-)Typ:

3. Spinell-Typ:
Zwei- und dreiwertige Ionen sind gleichzeitig vorhanden ($MgAl_2O_4$). Die dreiwertigen Kationen befinden sich dann in den Tetraederlücken, die zweiwertigen in den Oktaederlücken. Es werden dabei nicht alle Lücken besetzt.
<table>
<thead>
<tr>
<th>Strukturtyp</th>
<th>Verhältnis der Mindestradien</th>
<th>Kz Kation</th>
<th>Kz Anion</th>
<th>Beispiele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cäsiumchlorid</td>
<td>0,732</td>
<td>8</td>
<td>8</td>
<td>CsCl, CsBr, CsI, TlCl, TlI, NH₄Cl</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>0,414</td>
<td>6</td>
<td>6</td>
<td>LiHal, NaHal, KHal, RbHal (Hal = F, Cl, Br, I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MgS, MgO, CaS, CaO, SrS, SrO, BaS, BaONiS, NiO AgF</td>
</tr>
<tr>
<td>Zinkblende</td>
<td>0,225</td>
<td>4</td>
<td>4</td>
<td>ZnS, BeS, CdS, CuCl, CuBr, CuI, AgI</td>
</tr>
<tr>
<td>Fluorid</td>
<td>0,732</td>
<td>8</td>
<td>4</td>
<td>CaF₂, SrF₂, BaF₂, CdF₂, SrCl₂, BaCl₂</td>
</tr>
<tr>
<td>Antifluorid</td>
<td>0,225</td>
<td>4</td>
<td>8</td>
<td>Li₂O, Na₂O, K₂O, Rb₂O</td>
</tr>
<tr>
<td>Rutil</td>
<td>0,414</td>
<td>6</td>
<td>3</td>
<td>TiO₂, SnO₂, MnO₂, MgF₂, NiF₂, ZnF₂</td>
</tr>
</tbody>
</table>

Das Natriumchlorid-Ionengitter:

Natriumchlorid hat die Koordinationszahl 6

[Image of Natriumchlorid-Ionengitter]
Das Coulomb'sche Gesetz

Das Coulombsche Gesetz wurde von dem französischen Physiker Charles Augustin de Coulomb (1736-1806) im Jahre 1785 aufgestellt.

\[
E_C = \frac{k \cdot (\text{Anz. neg. Ladungen}) \cdot (\text{Anz. pos. Ladungen})}{r}
\]

\[
\Rightarrow \quad E_C \sim \frac{(\text{Anz. neg. Ladungen}) \cdot (\text{Anz. pos. Ladungen})}{r}
\]

\(E_C\) = Coulomb'sche Energie (hier: Energie, die bei der Gitterbildung frei wird)
\(r\) = Abstand der Ladungen zw. den Ionenmittelpunkten (= Kernen)
\(k = 8,9 \cdot 10^9\) J·m/C² (eine Konstante, unveränderbar!)

Allgemein beschreibt das Gesetz die elektrostatische Kraft zwischen zwei Punktladungen. Es besagt, dass diese Kraft proportional zum Produkt dieser beiden Ladungen und umgekehrt proportional zum Quadrat ihres Abstandes ist. Zwei Ladungen mit gleichem Vorzeichen (gleichnamige) stoßen sich ab, solche mit unterschiedenem Vorzeichen (ungleichnamige) ziehen sich an.

Das coulombsche Gesetz bildet die Basis der Elektrostatik.

Annahmen:
1. Wenn die Ladungen zweier Ionen das gleiche Vorzeichen haben, ist \(E_C\) positiv => es ist Energie notwendig, um die Ionen zusammenzubringen.
2. Ist eine Ionenladung aber negativ, ist das Vorzeichen negativ => es wird Energie frei!
3. Ist der Kation - Anion Abstand sehr klein, wird besonders viel Energie frei!
 => Je geringer der Abstand zwischen den Ionen ist, desto mehr Energie muss aufgebracht werden, um das Ionengitter aufzubrechen (Schmelzen).

Wovon hängt die Anziehung also ab?
Die Anziehung hängt von der Anzahl der Ladungen und von den Ionenradien ab.

Berechne, bei welchem Salz die Gitterenergie größer ist: Li⁺Cl⁻ oder Ag⁺Cl⁻
\(d_{LiCl} = (60pm+181pm) = 241 \cdot 10^{-12} m\)
\(d_{AgCl} = (115pm+181pm) = 296 \cdot 10^{-12} m\)

\(\Rightarrow\)
\(-2/ 241 \cdot 10^{-12} m = - 0,0083 \cdot 10^{-12} m\)
\(-2/ 296 \cdot 10^{-12} m = - 0,0068 \cdot 10^{-12} m = \text{die Energie wird bei AgCl proportional höher sein!}\)

Dies ist die Erklärung für die Tatsache, warum AgCl ein schwerlösliches Salz ist (siehe auch weiter hinten).

Tipps:
- 1 pm sind 0,000 000 000 001m also 10⁻¹² m.
- Ionenradien muss man in Tabellen nachschlagen, niemand weiß sie auswendig, also musst Du sie auch nicht lernen.

https://hoffmeister.it - 02.09.20
Wärme und Kälteeffekte beim Lösen von Salzen

V: Lösen (mit so wenig Wasser wie möglich. z.B.: jeweils 2 ml) verschiedener Salze mit gleichzeitiger Temperaturmessung (vorher Wassertemperatur messen!). Nach Lösen des Salzes wird die Temperatur erneut gemessen.

<table>
<thead>
<tr>
<th>Salze:</th>
<th>T</th>
<th>ΔT (mögliche Werte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td></td>
<td>-7°C</td>
</tr>
<tr>
<td>CuSO₄</td>
<td></td>
<td>-2°C</td>
</tr>
<tr>
<td>CaCl₂ · 6H₂O</td>
<td></td>
<td>1°C</td>
</tr>
<tr>
<td>CaCl₂</td>
<td></td>
<td>-7°C</td>
</tr>
<tr>
<td>NaCl</td>
<td></td>
<td>0°C</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>+2°C</td>
</tr>
</tbody>
</table>

S: Alle Feststoffe die aus Ionen aufgebaut sind, werden als Salz bezeichnet. Im festen Zustand bildet das Salz ein Ionengitter. Wird ein Salz in Wasser gelöst, gehen die Ionen vom unbeweglichen Gitterzustand in den freibeweglichen Zustand über.

Die geschieht in zwei Schritten:
- Aufbrechen des Ionengitters und freisetzen der Ionen. (Energie wir benötigt, da Ladungen getrennt (auseinander gezogen) werden müssen).
- An die freien Ionen lagern sich aufgrund elektrostatischer Anziehung Wassermoleküle an (Hydratisierung oder Hydrathüllenbildung). Dabei wird Energie freigesetzt.

\[
\text{Na}^+ \text{Cl}^- \xrightarrow{\text{E Gitter}} \text{Na}^+ + \text{Cl}^- \xrightarrow{\text{Hydratisierung}} \text{Na}^+_{(aq)} + \text{Cl}^-_{(aq)}
\]

(wird benötigt) \hspace{1cm} (wird frei)

Das legendäre „Banamenmodell“ der Hydratisierung - Ionen umhüllen sich mit Wasser

\[=\]

https://hoffmeister.it - 02.09.20
Ist der absolute Wert der Hydratationsenergie größer als der der Gitterenergie, kommt es zu einem Temperaturanstieg. Im anderen Fall löst sich das Salz unter Abkühlung.

Bei Salzen bei denen sich die Temperatur verringerte ist die $\Delta E_{\text{Gitter}} > \Delta E_{\text{Hydratisierung}}$

Bei Salzen bei denen sich die Temperatur erhöhte ist die $\Delta E_{\text{Gitter}} < \Delta E_{\text{Hydratisierung}}$
Unterkapitel IV: Fällungsreaktionen und chemische Nachweise
Fällungsreaktionen

Die Energieeffekte, die wir bis jetzt kennengelernt haben, haben natürlich auch praktische Auswirkungen.

Was ist ein schwerlösliches Salz?

Salze lösen sich meist gut in Wasser. Treffen aber zwei Ionen zusammen, deren Kombination ein schwerlösliches Salz ergibt, so fällt dieses auch sofort als Feststoff aus (erkennbar am Niederschlag => Trübung). Man nennt dies eine Fällungsreaktion.

Sie ist auch als Nachweis für Ionen geeignet. In Reaktionsgleichungen wird das Ausfallen eines Stoffes mit einem ↓ oder einem (s) für solid hinter der Summenformel des Stoffs gekennzeichnet.

Der Lösungsvorgang bei schwerlöslichen Salzen ist grundsätzlich endotherm. Die zum Lösren benötigte Gitterenergie ist sehr hoch. Die Hydratisierungsenergie reicht hier nicht aus, um das Ionengitter vollständig aufzulösen.

=> Das Salz löst sich nicht auf.
Fällungsreaktionen als chemische Nachweise

V: Kippe die folgenden Lösungen zusammen und untersuche das Ergebnis.

B: In einigen Fällen kommt es zu einer Trübung:

<table>
<thead>
<tr>
<th></th>
<th>KCl</th>
<th>K₂SO₄</th>
<th>AgNO₃</th>
<th>CuSO₄</th>
<th>BaCl₂</th>
<th>K₂CrO₄</th>
<th>KNO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>x</td>
<td>-</td>
<td>AgCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>x</td>
<td>-</td>
<td>BaSO₄</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AgNO₃</td>
<td>-</td>
<td>-</td>
<td>AgCl</td>
<td>Ag₂(CrO₄)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>-</td>
<td>x</td>
<td>BaSO₄</td>
<td>Cu(CrO₄)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BaCl₂</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>Ba(CrO₄) (gelb)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K₂CrO₄</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KNO₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Vergleich: Am ehesten kann man Fällungen mit einer Analogie erklären:

Die 10. Klasse fährt im engen Bus ins Schwimmbad. Im Bus sind alle eng zusammen (=Feststoff), im Wasser bewegen sich die Schüler dann wild hin und her. Treffen aber zwei „Verliebte“ aufeinander, so lassen sie sich nicht mehr los und sind (fast) untrennbar verbunden. ;-)
Übersicht über verschiedene Ionennachweise

Zur Kennzeichnung Deiner Reaktionsgleichungen, kannst Du die international gültigen Abkürzungen für die Aggregatzustände verwenden.

(s) = solid
(l) = liquid
(g) = gasförmig
(aq) = in Wasser gelöst

Nachweis von Cl⁻-Ionen
Nachweis durch: Zugabe von Ag⁺ - Ionen Lösung (z.B. AgNO₃)

Beispiel: Cl⁻(aq) + Ag⁺(aq) → Ag⁺Cl⁻(s)↓

Nachweis => weißer Niederschlag => Fällungsreaktion

Nachweis von Ag⁺-Ionen
Zum Nachweis von Silberionen verfährt man entsprechend umgekehrt: => Fällungsreaktion

Nachweis von SO₄²⁻-Ionen
Nachweis durch: Zugabe von Ba²⁺ Ionenlösung

Beispiel: Ba²⁺(aq) + (SO₄)²⁻(aq) → Ba²⁺SO₄²⁻(s)↓

Nachweis => weißer Niederschlag => Fällungsreaktion

Nachweis von Ba²⁺-Ionen
Zum Nachweis von Bariumionen verfährt man entsprechend umgekehrt. => Fällungsreaktion

Nachweis von Fe³⁺-Ionen
Nachweis durch: Zugabe von Cyanatlösung (z.B: Kaliumthiocyanatlösung)

Reaktion: Fe³⁺(aq) + 3 (SCN)⁻(aq) → Fe³⁺(SCN)₃,

Nachweis => tiefrot

Achtung: Keine Fällungsreaktion, sondern eine Komplexreaktion!

7 Der Pfeil ↓ bedeutet, dass dieser Feststoff ausfällt, d.h. sich am Boden abscheidet.
Nachweis von Cu²⁺-Ionen
Nachweis durch: Zugabe von Ammoniak oder Ammoniakwasser

Reaktion: \(\text{Cu}^{2+} + 4\text{NH}_3 \rightarrow [\text{Cu(NH}_3)_4]^{2+} \)

Nachweis: = tiefblaue Farbe (=Kupfertetraminkomplex)

Achtung: Keine Fällungsreaktion, sondern eine Komplexreaktion!

Nachweis von (CO₃)²⁻-Ionen
Nachweis durch: Bei Säurezugabe entsteht Kohlenstoffdioxid, welches als Gas oft am Zischen erkennbar ist.

Reaktion: \(2\text{HCl} + (\text{CO}_3)^{2-} \rightarrow \text{H}_2\text{CO}_3 + 2\text{Cl}^- \)

\(\text{CO}_2 \uparrow + \text{H}_2\text{O} \)

Nachweis: = Die Lösung schäumt stark auf. (CO₂-Bildung)

Keine Fällungsreaktion, da der Nachweis durch die Gasbildung geschieht.

Tabellarische Übersicht über wichtige chemische Nachweisreaktionen

<table>
<thead>
<tr>
<th>Nachzuweisender Soff</th>
<th>mögl. Nachweissubstanz</th>
<th>Nachweis durch Bildung von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag⁺</td>
<td>NaCl, KCl</td>
<td>AgCl weißer Niederschlag</td>
</tr>
<tr>
<td>Ba²⁺</td>
<td>K₂SO₄</td>
<td>BaSO₄ weißer Niederschlag</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>K₂CrO₄</td>
<td>CuCrO₄ grüner Niederschlag</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>NH₃</td>
<td>Cu[NH₃]₄ tiefblaue Farbe</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>KSCN</td>
<td>FeSCN₃ tiefrote Farbe</td>
</tr>
<tr>
<td>(CO₃)²⁻</td>
<td>HCl</td>
<td>CO₂ aufschäumen</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>AgNO₃</td>
<td>AgCl weißer Niederschlag</td>
</tr>
<tr>
<td>(SO₄)²⁻</td>
<td>BaCl₂</td>
<td>BaSO₄ weißer Niederschlag</td>
</tr>
<tr>
<td>(CrO₄)²⁻</td>
<td>BaCl₂</td>
<td>BaCrO₄ gelber Niederschlag</td>
</tr>
<tr>
<td>H₂</td>
<td>O₂ (Knallgasprobe)</td>
<td>H₂O Knall</td>
</tr>
<tr>
<td>O₂</td>
<td>C (Glimmspanprobe)</td>
<td>Glimmen</td>
</tr>
<tr>
<td>CO₂</td>
<td>Ca(OH)₂ (Kalkwasser)</td>
<td>CaCO₃ weißer Niederschlag</td>
</tr>
</tbody>
</table>
Übung: Nachweis von Ionen

Es liegen vier Lösungen in Rundkolben mit BaCl$_2$, KCl und K$_2$SO$_4$ sowie Wasser in einem der Kolben vor. Leider wurde vergessen, sie zu beschriften. Wie kann man herausfinden, welche Lösung in welchem Kolben ist?

Es wird nur ein Teil der Ionen nachgewiesen d.h. ein Schluss von Cl$^-$ auf z.B. NaCl ist nur unter diesen Voraussetzungen möglich.

Aufstellen der Fällungsgleichungen für alle Niederschläge => Welche Salze sind schwerlöslich?

<table>
<thead>
<tr>
<th>z.B.</th>
<th>Lösung 1</th>
<th>Lösung 2</th>
<th>Lösung 3</th>
<th>Lösung 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgNO$_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CuSO$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K$_2$SO$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaCl$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS mit AgNO$_3$:

NS mit BaCl$_2$:
Wozu dienen Fällungsreaktionen? Wasseruntersuchungen

Ein Labor hat 4 Wasserproben (3 Mineralwasser und ein destilliertes Wasser) auf ihren Ionengehalt untersucht und leider zur Befestigung der Etiketten einen schlechten Klebstoff verwendet. Die Schilder sind abgefallen. Ist jetzt noch möglich, die einzelnen Wasserproben den Laborergebnissen zuzuordnen?

Inhaltstoffe

1) Wie unterscheiden sich die Wasser?
2) Wisst ihr etwas über für den Körper brauchbare/ schädliche Ionen?
3) Welche Ionen habt ihr den schon nachgewiesen?

Versuch: Analyse dreier Mineralwasser

Drei Flaschen Mineralwasser und destilliertes Wasser werden in gleichen Bechergläsern präsentiert. Die Schüler sollen eine Zuordnung zu den Originalquellen versuchen.

Versuch: Nachweis von Chlorid und Sulfationen in:

a) Mineralwasser 1
b) Mineralwasser 2
c) Mineralwasser 3
d) Destilliertes Wasser

B: Unterschiedliche Trübungen, je nach Ionengehalt. => Zuordnung möglich!

Schlussfolgerung & Auswertung:

1. Welche zwei schwerlöslichen Salze haben wir gebildet?
2. Kann man mit unseren Erfahrungen jetzt den Chloridgehalt von Leitungswasser bestimmen?
3. Warum kann die ursprünglich „mindergiftige“ Bariumionenlösung unbeschadet in den Ausguss?
 Ja, denn Bariumsulfat ist ein als Mineral (Barit) sehr schlecht löslich! Es löst sich noch nicht mal in HCl!
5. Warum entfernt man nicht auf demselben Wege Chloridionen aus dem Wasser?
6. Beim Erhitzen von Wasser werden (durch komplizierte Reaktionen) Carbonate freigesetzt. Diese reagieren mit Calciumionen zu einem schwerlöslichen Salz. Wie heißt es und was für Folgen hat dies?
Laborergebnisse

Ordne die Wasserproben den entsprechenden Marken zu:

Destilliertes Wasser: Probe Nr.

<table>
<thead>
<tr>
<th></th>
<th>Wasser 1 [mg/l]</th>
<th>Wasser 2 [mg/l]</th>
<th>Wasser 3 [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe Nr.</td>
<td>Na⁺</td>
<td>3,6</td>
<td>27,5</td>
</tr>
<tr>
<td></td>
<td>K⁺</td>
<td>11,5</td>
<td>12,5</td>
</tr>
<tr>
<td></td>
<td>Mg²⁺</td>
<td>26,5</td>
<td>51,5</td>
</tr>
<tr>
<td></td>
<td>Ca²⁺</td>
<td>55,5</td>
<td>380,0</td>
</tr>
<tr>
<td></td>
<td>Cl⁻</td>
<td>10,1</td>
<td>30,9</td>
</tr>
<tr>
<td></td>
<td>SO₄²⁻</td>
<td>60,0</td>
<td>549,0</td>
</tr>
<tr>
<td></td>
<td>NO₃⁻</td>
<td><0,5</td>
<td><0,1</td>
</tr>
</tbody>
</table>
Kategorien von Trinkwassern

Natürliches Mineralwasser:

Quellwasser:
Quellwasser stammt aus unterirdischen Wasservorkommen. Der Unterschied zu natürlichem Quellwasser liegt darin, dass es nicht von ursprünglicher Reinheit sein muss. Das heißt, es dürfen sich innerhalb der Grenzwerte auch Schadstoffe darin befinden.

Tafelwasser:
Es wird auch „künstliches Mineralwasser“ genannt und kann aus Trinkwasser oder aus einer Mischung von Trink- und natürlichem Mineralwasser gewonnen werden.

Heilwasser:
Es unterliegt dem Arzneimittelgesetz! Teilweise hat es einen sehr hohen Gehalt an einzelnen Mineralsalzen. Mit einem Liter pro Tag kann der Tagesbedarf des Menschen schon überschritten werden.
Unterkapitel V: Zusammenfassung, Tipps und wichtige Hilfen
Unterscheidung der Stoffe chemischer Reaktionen

1. In der Chemie verwendet man meist drei Typen von Stoffen:

a) Elemente: (stehen im PSE)
Ihre Formel ist immer so, wie sie dort stehen (z.B. Mg oder Fe), bis auf die Ausnahmen Wasserstoff (H₂), Stickstoff (N₂), Sauerstoff (O₂) und die Elemente der 7. Hauptgruppe (F₂, Cl₂, Br₂, I₂).
Diese liegen immer als 2fach Molekülelelement vor. **Elemente haben keine Ionenladung!**

b) Ungeladene Molekülverbindungen aus mehreren Elementen: (z.B. H₂O, CO₂ oder NH₃)
Ihre Formel muss man kennen (also lernen). Es gibt aber auch Moleküle mit Ionenladungen. Dazu gehören zum Beispiel die Säurereste. Diese Ladungen musst Du lernen - da hilft alles nichts!

c) Salze und Oxide:
Hier liegen **Ionen** vor. Die Ladungen kannst Du oft im Periodensystem an der Hauptgruppennummer ablesen! (Erklärung siehe unten)
(Typische Salze: KCl, Na₂SO₄, Ca₃(PO₄)₂; typische Oxide: CuO, Fe₂O₃, Na₂O)

Drei Möglichkeiten Ionenreaktionen zu notieren

1. Vollständige Salze angeben (mit oder ohne Ionenladung):
Salze: \[\text{Ba(NO}_3\text{)}_2 (aq) + \text{Mg(SO}_4\text{)} (aq) \rightarrow \text{Mg(NO}_3\text{)}_2 (aq) + \text{Ba(SO}_4\text{)} (s) \]
Salze mit Ionenladungen: \[\text{Ba}^{2+}(\text{NO}_3^-)^2 (aq) + \text{Mg}^{2+}(\text{SO}_4^{2-})^2 (aq) \rightarrow \text{Mg}^{2+}(\text{NO}_3^-)^2 (aq) + \text{Ba}^{2+}(\text{SO}_4^{2-})^2 (s) \]
Beachte:
 • Gelöste Salze werden mit (aq) abgegeben. Das bedeutet, dass die Ionen gelöst in Wasser, also hydratisiert sind. Feststoffe werden mit (s) „solid“ gekennzeichnet ((l) für Flüssigkeiten, (g) für Gase).
 • Bariumsulfat ein Feststoff, also nicht gelöst!

2. Salze in einzelne Ionen aufführen: (immer mit Ionenladung!):
\[\text{Ba}^{2+} (aq) + 2 (\text{NO}_3^-) (aq) + \text{Mg}^{2+} (aq) + (\text{SO}_4^{2-}) (aq) \rightarrow \text{Mg}^{2+} (aq) + 2 (\text{NO}_3^-) (aq) + \text{Ba(SO}_4\text{)} (s) \]
Beachte: Auch hier ist Bariumsulfat ein Feststoff, also nicht gelöst!

3. Weglassen der Ionen die an der eigentlichen Reaktion nicht teilnehmen:
\[\text{Ba}^{2+} (aq) + (\text{SO}_4^{2-}) (aq) \rightarrow \text{Ba}^{2+}(\text{SO}_4^{2-}) (s) \]
Um Reaktionsgleichungen übersichtlicher zu gestalten, kann man Ionen, die bei der Reaktion nicht teilnehmen weglassen. Man sollte aber immer daran denken, dass sie trotzdem vorhanden sind!

https://hoffmeister.it - 02.09.20
Wiederholungsfragen Ionen

Ionen & Salze

2. Was ist ein Ion? Definiere,
3. Erkläre den Begriff Edelgaskonfiguration.
5. Nenne die Regeln, nach denen man die Ionenladung eines Ions bestimmen kann.
7. Bestimme die Ionenladung der folgenden Ionen und erstelle die Summenformel, welche sie im entsprechenden Salzkristall haben:

<table>
<thead>
<tr>
<th></th>
<th>Cl</th>
<th>Br</th>
<th>O</th>
<th>SO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Stelle die folgenden Reaktionsgleichungen auf und kennzeichne dabei alle Ionen:
 a) Ammoniumcarbonat reagiert zu Ammoniak, Kohlendioxid und Wasser.
 b) Ammoniumhydrogensulfid zerfällt in Ammoniak, Schwefeldioxid und Wasser
 c) Reaktion von Natriumhydrogencarbonat mit Schwefelsäure. Es entstehen Kohlendioxid, Natriumsulfat und ein dritter,Dir bekannter Stoff.
 d) Kaliumhydrogencarbonat wird durch Hitze zu Kohlendioxid, Wasser und einem dritten Stoff zersetzt.
 e) Reaktion von FeSO₄ mit Sauerstoff zu Eisen(III)-oxid und Schwefeldioxid.

10. Betrachte die Bildung von Natriumchlorid unter energetischem Aspekt im Detail. Welche Einzelschritte laufen ab?

12. Warum ist die Reaktion insgesamt exotherm?

13. Definiere die Begriffe Ionisierungsenergie und Elektroaffinitätsenergie.

14. Warum hat Natriumchlorid die Summenformel NaCl?

15. Was versteht man unter dem Begriff „Koordinationszahl“?

16. Wovon hängt die Koordinationszahl ab?

17. Nenne und erkläre die Coulomb'sche Formel.

18. Erkläre den Vorgang des Schmelzens. Wovon ist der Schmelzpunkt abhängig?

20. Welche Ionen sind in Natriumchlorid zu finden? Welche in Berylliumsulfat?

21. Ionen entstehen durch...

22. Ionen unterscheiden sich von Atomen durch...

24. Welche Eigenschaften haben Ionen?

25. Wie bestimmt man die Ladung eines Säurerestes? Welche Ladung hat der Säurerest der Chromsäure H₂Cr₂O₇ und der der Kieselsäure H₂SiO₃?

26. Welche Voraussetzungen müssen gegeben sein, damit Ionen den Strom leiten?

27. Stelle die folgenden Reaktionsgleichungen auf: (Tipp: Bilde Ionen aus der Schwefelsäure)
 a) Schwefelsäure + Wasser
 b) Schwefelsäure + Magnesium

28. Erkläre den Begriff Ionenbindung. Wodurch werden die Ionen im festen Aggregatzustand zusammengehalten?

31. Erkläre den Begriff Ionenbindung. Wodurch werden die Ionen zusammengehalten?

32. Warum hat Natriumchlorid die Summenformel NaCl? Wäre Na₁₀₀₀Cl₁₀₀₀ nicht passender?

33. Erkläre den Vorgang des Schmelzens eines Salzes. Wovon ist der Schmelzpunkt abhängig?

https://hoffmeister.it - 02.09.20
Übungstest zum Thema „Salze und Ionen“ II

1. Ionenwanderung: in welche Richtung „laufen“ folgende Ionen: (1P + 2P Begr. => 3P)

\[\text{Li}^+ \quad \text{Br}^- \]

20V

Begründung:

\[\text{Begründung:} \]

\[\text{Begründung:} \]

\[\text{Begründung:} \]

\[\text{Begründung:} \]

Messung 1) 186 pm sowie 97 pm
a) Natriumatom:
b) Natriumion:

Messung 2) 180 pm sowie 181 pm
c) Chloratom:
d) Chloridion:

Begründe Deine Meinung:

\[\text{Begründe Deine Meinung:} \]

Summe: